数学联邦政治世界观
超小超大

勒布定理

假设算术公理系统 S ,称 P 是 S 的可证性谓词,当且仅当 P 满足以下三个条件:

1. 如果 S⊢ψ ,那么 S⊢P(⌈ψ⌉) ,其中 ⌈ψ⌉ 是 ψ 的哥德尔编码。下文中我们直接用 Pψ 表示 P(⌈ψ⌉) 。

2. S⊢P(ψ→φ)→(Pψ→Pϕ) 。

3. S⊢Pψ→PPψ

可以证明“存在 x 编码了公式 ϕ 的证明”是算术系统 PA 的一个可证性谓词。下文中我们直接令 PA=S ,令 P(x) 为“存在 x 编码了公式 ϕ 的证明”。

在哥德尔第一不完全性定理中,罗瑟(Rosser)定义了一个语句 G ,使得 PA⊬G 且 PA⊬¬G ,进而证明了 PA 不是完全的。这个语句 G 可以简单理解为“ G 不可证”,类似于说谎者悖论。那么如果一个语句陈述自己可以被证呢?即语句 ϕ 满足 ϕ↔Pϕ 。如果这样的语句存在,那么它会有什么样的性质呢?

勒布定理:如果 Pψ→ψ 是 PA 的定理,那么 ψ 是 PA 的定理。

证明: P(x)→ψ 是含有一个自由变元的公式,根据不动点引理,存在公式 φ 满足 φ↔(Pφ→ψ) 。根据条件 3 可得 Pφ→(PPφ→Pψ) ,根据条件 2 可得 Pφ→Pψ ;由于 Pψ→ψ 是 PA 的定理,因此 Pφ→ψ 是 PA 定理,进一步得 φ 是 PA 定理,根据条件 1 可得 Pφ 是 PA 定理,则 ψ 是 PA 定理。因此勒布定理成立。 ⊣

由勒布定理可以轻松推出第二不完全性定理(Kreisel):如果 PA 一致,令 ⊥ 为矛盾式 0=1 ,那么 ⊢P⊥→⊥ 蕴含 ⊢⊥ ,即 ⊢¬P⊥ 蕴含 ⊢⊥ ,由于假设 PA 一致,因此 ⊬⊥ ,则有 ⊬¬P⊥ ,而 ¬P⊥ 就是“ PA 是一致的”,第二不完全性定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

一个誓言走一世 连载中
一个誓言走一世
情终须缘
复合√回家√蝶眸殉情黑化……(反正不虐,很甜)一笑倾国,再笑倾城。
10.1万字2个月前
快穿:娇软万人迷 连载中
快穿:娇软万人迷
江鱼不是鱼
全员单箭头,一见钟情梗,万人迷,脑子寄存—
3.8万字4周前
末世语阳 连载中
末世语阳
不知名刀刀
女主角酚易:一个坚强、聪明、有领导力的女性,末世前是医生。男主角白莱:一个勇敢、机智、有责任感的男性,末世前是军人。在共同的战斗和生存中,酚......
2.0万字1个月前
玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字1个月前
丧尸界里当军师 连载中
丧尸界里当军师
万紫万红
1V1四对cp凌芊芊从小与他人不同一次她跟随老奶奶进入另一个异空间。当起了界丧尸家族的国师。开启国师之路,慢慢的自己的身世之谜浮出水面知晓自......
23.6万字1个月前
蘤 连载中
繁梦hfrm
本片之前的名字《花》但由于一直打不出来,所以已《蘤》命名本篇文章是以一个穿梭在多重空间里的组织这个组织坐落在一道空间裂缝里名叫溟翼的神秘组织......
1.5万字1个月前