数学联邦政治世界观
超小超大

(数学定理)篇章

(Schröder-Bernstein)定理的证明:

(card X≤cardY)∧(card Y ≤ card X)⇒(card X= card Y)

的以下证明.

◄ 只需证明:如果集合X,Y,Z满足X⊃Y⊃Z且card X=card Z,则card X=card Y.设f:X → Z是双射,那么,例如,可以用以下方式给出双射g:X→Y:

g(x)={f(x),如果对于某个 n ∈ N 有x ∈ fⁿ(X)\jⁿ(Y),

{x,在其余情况下.

这里 fⁿ=f◦· · ·◦f是映射 f 的 n 次迭代,而N是自然数集.►

Schröder-Bernstein定理在主流的数学分析教材中都有介绍,叙述简单,意义也很清晰:

设 f:X → Y,g:Y → X 均为单射,则存在 X,Y 间的双射。

但其证明并不像定理本身那样简洁,Зорич和于品的数学分析教材中都把这一证明编成了习题,本文采用的即是于品老师讲义中的处理方法。

考虑到 f:X → f(X),g⁻¹:g(Y) → Y 均为双射,只需找到 X 的一个分划 A|B ,使得 f(A)|g⁻¹(B) 也是 Y的分划即可。由于 f,g 均为单射,故原条件可转化为:

条件可转化为:

g◦f(A)∩g∘g⁻¹(B)=∅ (1)

g◦f(A)∪g◦g⁻¹(B)=g◦f(A)∪B=g(Y)

(2)

首先考虑条件 (1) :

记 X′=X−g(Y) , g◦f=h:X→X ,条件 (1) 可改写为: X′∪h(A)⊂A 。故考虑 X 的子集类

F={U⊂X|X′∪h(U)⊂U}

显然, X∈F ,故 F 非空;

其次,对 ∀U∈F,X′∪h(U)⊂U ⇒ X′∪h[X′∪h(U)]⊂X′∪h(U), 则:

X′∪h(U)∈F ;

另外, F对任意交封闭: ∀{Uα}⊂F,Λ={α}为任意指标集, ⋂α∈ΛUα∈F。

证明: X′∪h(⋂α∈ΛUα)⊂X′∪⋂α∈Λh(Uα)⊂X′∪⋂α∈ΛUα=⋂α∈ΛUα,得证。

其次考虑条件件 (2):

h(A)∪B={[X′∪h(A)]∩g(Y)}∪B⊂[A∩g(Y)]∪B=g(Y)

故条件 (2) 成立当且仅当

X′∪h(A)=A

显然, F 的所有元素之交 A₀=⋂U∈F U∈F 满足要求:

一方面, X′∪h(A₀)⊂A₀ ;

另一方面,由于 A0是 F 中所有元素的交, X′∪h(A₀)∈F ,故

A₀ ⊂ X′∪h(A₀) 。

从而有: X′∪h(A₀)=A₀

至此,我们已得到了一个双射

φ:X → Y

φ(x)

{f(x)… if x ∈ A₀

{g⁻¹(x)… if x ∈ Ⅹ-A₀

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

龙卷风之后 连载中
龙卷风之后
飞向天宏
南海的某夏天,一场突如其来的龙卷风,这是五千罕见的超强风,它所之处,一片狼藉……
12.1万字8个月前
萤讯末期 连载中
萤讯末期
池年陌
人与AI的禁忌之恋
1.7万字6个月前
总有Alpha想泡我家老大 连载中
总有Alpha想泡我家老大
带上Nancy
Omega老大的甜蜜爱情故事,顶着最温柔的名头,打最狠的架
2.9万字6个月前
神陨之墟:光明颂 连载中
神陨之墟:光明颂
筱音韵
在神明隐退的破碎纪元,银发少女洛璃背负着连自己都遗忘的创世之秘。一次惨烈的守城战中,她被恶魔首领的毒箭贯穿心脏,从云端坠落——神力溃散、记忆......
0.5万字5个月前
云雾尽散 连载中
云雾尽散
银线皎月
过一个个的副本,让自己的心变得铁石心肠,直到救出自己的命定之人
0.9万字4个月前
离殇之泪 连载中
离殇之泪
君墨曦
我见过春日夏风,秋夜冬雪,也踏遍南水北山东麓西岭,可这四季春秋,都不及你对我展眉一笑。这大好河山,若没有你陪我一起观赏,那我要这江山有何用?......
0.3万字4个月前