数学联邦政治世界观
超小超大

(数学定理)篇章

(Schröder-Bernstein)定理的证明:

(card X≤cardY)∧(card Y ≤ card X)⇒(card X= card Y)

的以下证明.

◄ 只需证明:如果集合X,Y,Z满足X⊃Y⊃Z且card X=card Z,则card X=card Y.设f:X → Z是双射,那么,例如,可以用以下方式给出双射g:X→Y:

g(x)={f(x),如果对于某个 n ∈ N 有x ∈ fⁿ(X)\jⁿ(Y),

{x,在其余情况下.

这里 fⁿ=f◦· · ·◦f是映射 f 的 n 次迭代,而N是自然数集.►

Schröder-Bernstein定理在主流的数学分析教材中都有介绍,叙述简单,意义也很清晰:

设 f:X → Y,g:Y → X 均为单射,则存在 X,Y 间的双射。

但其证明并不像定理本身那样简洁,Зорич和于品的数学分析教材中都把这一证明编成了习题,本文采用的即是于品老师讲义中的处理方法。

考虑到 f:X → f(X),g⁻¹:g(Y) → Y 均为双射,只需找到 X 的一个分划 A|B ,使得 f(A)|g⁻¹(B) 也是 Y的分划即可。由于 f,g 均为单射,故原条件可转化为:

条件可转化为:

g◦f(A)∩g∘g⁻¹(B)=∅ (1)

g◦f(A)∪g◦g⁻¹(B)=g◦f(A)∪B=g(Y)

(2)

首先考虑条件 (1) :

记 X′=X−g(Y) , g◦f=h:X→X ,条件 (1) 可改写为: X′∪h(A)⊂A 。故考虑 X 的子集类

F={U⊂X|X′∪h(U)⊂U}

显然, X∈F ,故 F 非空;

其次,对 ∀U∈F,X′∪h(U)⊂U ⇒ X′∪h[X′∪h(U)]⊂X′∪h(U), 则:

X′∪h(U)∈F ;

另外, F对任意交封闭: ∀{Uα}⊂F,Λ={α}为任意指标集, ⋂α∈ΛUα∈F。

证明: X′∪h(⋂α∈ΛUα)⊂X′∪⋂α∈Λh(Uα)⊂X′∪⋂α∈ΛUα=⋂α∈ΛUα,得证。

其次考虑条件件 (2):

h(A)∪B={[X′∪h(A)]∩g(Y)}∪B⊂[A∩g(Y)]∪B=g(Y)

故条件 (2) 成立当且仅当

X′∪h(A)=A

显然, F 的所有元素之交 A₀=⋂U∈F U∈F 满足要求:

一方面, X′∪h(A₀)⊂A₀ ;

另一方面,由于 A0是 F 中所有元素的交, X′∪h(A₀)∈F ,故

A₀ ⊂ X′∪h(A₀) 。

从而有: X′∪h(A₀)=A₀

至此,我们已得到了一个双射

φ:X → Y

φ(x)

{f(x)… if x ∈ A₀

{g⁻¹(x)… if x ∈ Ⅹ-A₀

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

修罗女君,终入怀! 连载中
修罗女君,终入怀!
糖丝甜
千万幽怨,已难渡万般情。最后的最后,那血发女子也成了帝上,掌管天上人间,威仪八方。而那扯下别人发带的少年同是帝上,与女子同渡万年,也将女子爱......
25.1万字7个月前
秋风下的女孩 连载中
秋风下的女孩
166***982_8882861693
同化,初心,消散
0.3万字6个月前
没有原因的爱 连载中
没有原因的爱
清风吹晓梦
因为儿时的一次偶然,江田喜欢上了顾辰,经历了多年的努力终于和顾辰分到一个班,并且是同桌,开始江田却没有勇气告白,终于在这这一天江田将自己的心......
2.2万字6个月前
星光秘事 连载中
星光秘事
青念苒
第一季[未完待续]为什么会有这么多遗憾呢,一场残忍的大赛,亲人不爱,被抛弃,兄弟反目成仇——暮雪只是为一件事。要欺骗这么多人吗?总之这一切我......
1.3万字5个月前
寂暗梦回 连载中
寂暗梦回
黎池念
你觉得你现在处的世界是真实的,还是在一场游戏中?亲爱的玩家,你不觉得现在的生活太无趣了吗?和我一起来参加这场有趣的游戏吧~
8.6万字3个月前
一念珠蓝 连载中
一念珠蓝
斗胆一问
【双男主】清亦川×江楚熙————“这个世界好黑暗啊,但你是我唯一的光。”江楚熙抬头看着清亦川,脸上充满笑容。————江熙璟静静地躺在江楚熙的......
1.4万字3周前