数学联邦政治世界观
超小超大

Martin Axiom马丁公理的推论

定义 MA(κ) :对于任意满足可数反链条件的非空偏序集 P 上的任意基数 ≤κ 的稠密子集族 𝕯 ,都存在泛型滤子(generic filter) G 满足 ∀Dα∈𝕯(Dα∩G≠∅) ,其中 κ<c 。马丁公理: MA↔∀κ<c(MA(κ)) 。显然 CH→MA ,因此此时不存在 ω<κ<c 。

马丁公理乍一看很难理解,但我们可以把它看作是力迫法的一种推广:我们使用力迫法时往往会用以下句子开头“设 M 是 ZFC 的可数传递模型,然后blabla”,由于 M 可数,那么力迫偏序 ℙ∈M 在 M 的稠密子集只有可数个,因此我们可以递归构造泛型滤子 G :令 D₁,D₂,⋯ 是 M 中的稠密子集,从中选取元素满足 p₀≥p₁≥⋯ ,最后令 G={q∈P:∃n(q≥pₙ)} 即可。那如果 P 有不可数个稠密子集呢?此时如何保证泛型滤子存在?马丁公理应运而生。

本文将简要证明马丁公理的两个推论:不存在Suslin树以及 κ<c→2κ=c 。

定理 1 :如果 MA(ω₁) 成立,那么不存在Suslin树。Suslin树是一棵 ω₁ 树,它满足可数反链条件且没有长度为 ω₁ 的树枝。

证明:假设 (T,<) 是Suslin树,定义 T′={t∈T:|{s:s≥t}|≥ω₁} ,不难验证 T′ 为Suslin树且 ∀s∈T′∃t∈T′(t>s) ;定义 < 的逆关系 ≺ 为 t<s↔s≺t ,定义 Dα={s∈T′:∃t∈Tα′(s≺t)} ,不难证明 Dα 是稠密子集;由于 MA(ω₁) ,因此存在泛型滤子 G 满足 G∩Dα≠∅ ,则 ⋃G 就是长度为 ω₁ 的树枝,反证定理成立。 ⊣

下面我们证明 κ<c→2κ=c ,为此,我们需要先引入一些概念引理。

称 ℑ⊆[ω]ω 为几乎不交族,当且仅当 ∀x,y∈ℑ(|x∩y|<ω) 。

引理 1 :若 ℑ 是极大几乎不交族,那么 ℑ 的基数不可数。

证明:反证法,假设 ℑ={Xᵢ}ᵢ<ω ,由于 Xᵢ∩Xⱼ 是有限集,因此 Xₙ₊₁ − ⋃ᵢ≤ₙ Xᵢ 是无限集。令 Y₁=min(X₁−X₀) 和 Yₙ₊₁=min(Xₙ₊₁− ⋃ᵢ≤ₙ Xᵢ) ,定义 Y=⋃ₙYₙ ,这样 Y≠Xₙ 且 Y∩Xₙ 是有限集,这与 ℑ 极大矛盾,反证引理成立。 ⊣

定义 Fₙ={Xᵢ}ᵢ≤ₙ ,注意到在上述证明过程中 ⟨Yₙ,Fₙ⟩ 满足如下特点:若 n<m ,那么 ∀A∈Fₙ(A∩Yₘ=Aₙ) ,换言之, Yₘ 并没有增加 Fₙ 中的自然数集子集的元素,这诱导我们给出一个偏序结构:令 ℑ 是无穷几乎不交族,定义 Pℑ={(s,F):s∈[ω]<ω∧F∈[ℑ]<ω} ,定义 Pℑ 是偏序结构为:

(s,F)≤(t,G)↔s⊇t∧F⊇G∧(⋃G∩s⊆t)

不难看出 (s,F),(t,G) 相容当且仅当 (⋃F∩t⊆s)∧(⋃G∩s⊆t) ,显然,这意味着 (s,F∪{x})≤(s,F) ;也不难看出 Pℑ 满足可数反链条件:假设 Q⊆Pℑ 是不可数集合,因此存在 s 、存在 F₀,F₁ 满足 (s,F₀),(s,F₁)∈Q ,那么 (s,F₀∪F₁)≤(s,Fᵢ),i∈2 。

引理 2 :令 x∈ℑ 和 Dₓ={(s,F)∈Pℑ:x∈F} ,那么 Dₓ 是 Pℑ 的稠密子集。

证明:任选 (t,G) ,那么 (t,G∪{x})∈Dx 。 ⊣

引理 3 :假设 y∈[ω]ω 满足 ∀F∈[ℑ]<ω(|

y−⋃F|=ω) ,那么 Ey,n={(s,F):y∩s⊈n} 是 Pℑ 稠密子集。

证明:任选 (s,F) ,由于 |y−⋃F|=ω ,因此存在 i 满足 i∈(y −⋃F)∧i>n ,那么 (s∪{i},F)≤(s,F) 且 (s∪{i},F)∈Ey,n ,定理成立。 ⊣

引理 4 :假设 G 是 Pℑ 的滤子且 g=⋃{s:∃F(s,F)∈G} ,如果 G∩Dx≠∅ 且 ∀F∈[ℑ]<ω(|y−⋃F|=ω) 以及自然数 n 都有 Ey,n∩G≠∅ ,那么 |g∩x|<ω∧|g∩y|=ω 。

证明:若 (t,H)∈G 且 (s,F)∈G∧x∈F ,若 (t,H)≤(s,F) ,那么 x∩t⊆s ,因此 g∩x⊆s ;由于对于任意自然数 n 都有 Ey,n∩G≠∅ ,令 (tₙ,Hₙ)∈G∧(tₙ∩y ⊈ n) ,那么 ⋃ₙ tₙ ⊆g ,则 g∩y 是无限集,定理成立。 ⊣

定理 2 :如果 MA(κ) 且 |ℑ| 的基数是 κ ,那么 ℑ 不是极大几乎不交族。

证明:令 G 是 Pℑ 的脱殊滤子和 x∈ℑ ,根据引理 2 知 Dₓ 是稠密开集,因此 Dₓ∩G≠∅ ,由引理 4 可得 g∩x 是有限集,因此 g∉ℑ (因为 g∩g=g 是无限集)且 g 与 ℑ 中的元素几乎不交。 ⊣

定理 3 :如果 MA(κ) 且 ν⊂ℑ 是无穷真子集,那么存在 g 满足 ∀x∈ℑ(x∈ν↔|x∩g|<ω) 。

证明:根据定理 2 知存在 y∈ℑ 满足 y∉ν∧∀x∈ν(|x∩y|<ω) ,令这样的 y 构成集族 Y⊆ℑ ,因此 Dx,x∈ν 和 Ey,ₙ,y∈Y 都是稠密集,由 MA(κ) 知存在 G 是 Pᵥ 脱殊滤子,根据引理 4 知 x∈ν→|x∩g|<ω 且 y∈Y→|y∩g|=ω ,因此 g 即为所求。 ⊣

根据定理 3 ,我们可以定义 [ℑ]≥ω→2ω 的单射 ϕ ,其中 ϕ(ν)=g ,这样就有 2κ=2ω ,因此 MA(κ)→2κ=c ,定理成立。

推论: c 是正则基数。

证明:否则 κ=cf(c)<c ,那么cf(2κ)=cf(c)=κ ,矛盾,反证推论成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字2个月前
星辰荣耀之冠军之路 连载中
星辰荣耀之冠军之路
同学:好久不见
以下是为这部小说生成的作品简介:《星辰荣耀之冠军之路》讲述了性格内向但极具电竞天赋的女孩林悦瑶,在机缘巧合下被职业战队教练发掘,从此踏上电竞......
7.0万字2个月前
垃圾断文章合集 连载中
垃圾断文章合集
一一默rycidxy
所有内容都为言情。这一本是黑历史。我自己写的一些篇章和和别人一起写的一些篇章,会汇集到这本书里。类型多样,风格多样。
1.8万字2个月前
勿入混圈 连载中
勿入混圈
段筱玖
女主段筱筱的作死之路
0.2万字2个月前
索罗特尔奥特曼 连载中
索罗特尔奥特曼
风起银河下
我是索罗特尔,不要为我的名字害怕贝利亚应该可能大概是我爹捷德应该可能大概是我哥。放心,我不会乱揍人(我揍的都不是人)(故事架空世界线,不喜勿......
1.9万字1个月前
林晓晓 连载中
林晓晓
多吃一点米
故事设定了基调和背景,接下来的故事将围绕陆霆骁和林晓晓之间的关系发展,以及他们如何共同面对即将到来的挑战和阴谋
2.1万字1个月前