数学联邦政治世界观
超小超大

Martin-Solovay马丁公理(假设与成立)篇章

Martin-Solovay定理:如果 MAκ 且 ⟨Dα:α<κ⟩ 是零测集序列,那么 ⋃α Dα 是零测集。

证明:根据零测集定义,只需证明对于任意 δ>0 ,存在开集 G⊇⋃α Dα 且 μ(G)≤δ 。定义偏序集

P={p⊆R:p是开集且μ(p)<δ} ,定义 p≤q↔p⊇q 。下面证明 P 满足可数反链条件:任选 P 的不可数子集 W ,显然存在 T⊆W∧

|T|>ω 和自然数 n 满足 p∈T→μ(p)<δ−1。

令 ⟨Iₖ:k<ω⟩ 是全体“有限个有理开集的并”的枚举,不难证明:对于任意 p∈T 、都存在 Iₖ ⊆p 满足 μ(p−Iₖ)<1

,并且存在不可数子集 S⊆T 和 I′ 满足 ∀p∈S,μ(p−I′)<1

,任选 p,q∈S ,那么 μ(p∪q)≤μ(p−I′)+μ(q−I′)+μ(I′)<δ ,因此 P 满足可数反链条件。

令 Aα={p∈P:p⊇Dα} ,不难看出 Aα 是稠密集:因为 Dα 是零测集,任选 p∈P∧μ(p)<δ−1

,那么任选q⊇Dα∧μ(q)<1

ₙ ,

则 p∪q∈Aα 。根据马丁公理,存在脱殊滤 G 与每个 Aα 的交不空,令 U=⋃G ,则 U⊇⋃αDα ,下面证明 μ(U)≤δ :首先注意到存在可数集 H⊆G 满足 U=⋃H ,此时如果 μ(U)>δ ,那么存在 p₁,⋯,pₙ∈H 满足 μ(p₁∪⋯∪pₙ)>δ (因为设 μ(p₁∪⋯∪pᵢ)=sᵢ ,那么 {sᵢ}ᵢ<ω 是单调递增序列,若 ∀i(sᵢ≤δ) ,那么 limᵢ sᵢ≤δ )但 G 是脱殊滤,因此 p₁∪⋯∪pₙ∈G ,则 μ(p₁∪⋯∪pₙ)≤δ ,矛盾,反证定理成立。而 H 的存在性有以下论证支持:如果 (α,b)=⋃η<λ(αη,bη),那么对于任意自然数 n ,存在 αη,bη′ 满足 |α−αη|,|b−bη′|< 1

ₙ ;

实数轴上每个开集都可 ⋃ᵢ<ω(αᵢ,bi) 的形式。 ⊣

推论:如果 MAκ 成立,那么任意 κ 个不交可测集 {Aα}α<κ ,都有 ∑αμ(Aα)=μ(∑α Aα) 。

证明:由于 {Aα}α<κ 只有可数个集合的测度大于零,且 κ 个零测集的并还是零测集,因此推论成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

相遇和你 连载中
相遇和你
樱三
李云天为天玄宗立下了汗马功劳,原本是天玄宗宗主继承人,却没想到被宗门弟子嫉妒惨遭暗算,迫不得已打开了异世界的通道,将自己元神分离进入了这个异......
4.2万字1年前
亡命之徒:救赎 连载中
亡命之徒:救赎
上官子兰
被人改造的实验体是根本没有人类的感情…———————————————这里是世界上最大的实验基地也是设备样样俱全的“莫古拉实验基地”里面的科学......
0.8万字10个月前
小刘的发疯日常 连载中
小刘的发疯日常
紫薯LO
神神经经,没有烦恼!啊啊啊啊!
0.5万字9个月前
暮秋雪与云逸永恒的守护 连载中
暮秋雪与云逸永恒的守护
昕愛凌
暮秋雪,神界神女,为拯救苍生耗尽神力而死。临终前,她唯一的遗憾是未曾拥有爱情。于是,她重生为凡间孩童,找到挚友恬莎寻求庇护。与此同时,她的三......
7.5万字8个月前
穿成海王自救指南 连载中
穿成海王自救指南
忆岱痴
游戏数据出错,一朝被困游戏,如何才能活到最后?且看慕朝朝手把手教你戏精自救。
15.9万字8个月前
怎么办?主角比我还反派 连载中
怎么办?主角比我还反派
爱吃早茶
苏砚意外绑定反派系统,本想好好完成任务,只不过主角不按剧情走就算了,怎么比他更像反派?白雪王子:连载中
11.2万字3个月前