数学联邦政治世界观
超小超大

Martin-Solovay马丁公理(假设与成立)篇章

Martin-Solovay定理:如果 MAκ 且 ⟨Dα:α<κ⟩ 是零测集序列,那么 ⋃α Dα 是零测集。

证明:根据零测集定义,只需证明对于任意 δ>0 ,存在开集 G⊇⋃α Dα 且 μ(G)≤δ 。定义偏序集

P={p⊆R:p是开集且μ(p)<δ} ,定义 p≤q↔p⊇q 。下面证明 P 满足可数反链条件:任选 P 的不可数子集 W ,显然存在 T⊆W∧

|T|>ω 和自然数 n 满足 p∈T→μ(p)<δ−1。

令 ⟨Iₖ:k<ω⟩ 是全体“有限个有理开集的并”的枚举,不难证明:对于任意 p∈T 、都存在 Iₖ ⊆p 满足 μ(p−Iₖ)<1

,并且存在不可数子集 S⊆T 和 I′ 满足 ∀p∈S,μ(p−I′)<1

,任选 p,q∈S ,那么 μ(p∪q)≤μ(p−I′)+μ(q−I′)+μ(I′)<δ ,因此 P 满足可数反链条件。

令 Aα={p∈P:p⊇Dα} ,不难看出 Aα 是稠密集:因为 Dα 是零测集,任选 p∈P∧μ(p)<δ−1

,那么任选q⊇Dα∧μ(q)<1

ₙ ,

则 p∪q∈Aα 。根据马丁公理,存在脱殊滤 G 与每个 Aα 的交不空,令 U=⋃G ,则 U⊇⋃αDα ,下面证明 μ(U)≤δ :首先注意到存在可数集 H⊆G 满足 U=⋃H ,此时如果 μ(U)>δ ,那么存在 p₁,⋯,pₙ∈H 满足 μ(p₁∪⋯∪pₙ)>δ (因为设 μ(p₁∪⋯∪pᵢ)=sᵢ ,那么 {sᵢ}ᵢ<ω 是单调递增序列,若 ∀i(sᵢ≤δ) ,那么 limᵢ sᵢ≤δ )但 G 是脱殊滤,因此 p₁∪⋯∪pₙ∈G ,则 μ(p₁∪⋯∪pₙ)≤δ ,矛盾,反证定理成立。而 H 的存在性有以下论证支持:如果 (α,b)=⋃η<λ(αη,bη),那么对于任意自然数 n ,存在 αη,bη′ 满足 |α−αη|,|b−bη′|< 1

ₙ ;

实数轴上每个开集都可 ⋃ᵢ<ω(αᵢ,bi) 的形式。 ⊣

推论:如果 MAκ 成立,那么任意 κ 个不交可测集 {Aα}α<κ ,都有 ∑αμ(Aα)=μ(∑α Aα) 。

证明:由于 {Aα}α<κ 只有可数个集合的测度大于零,且 κ 个零测集的并还是零测集,因此推论成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

江怀南岸 连载中
江怀南岸
湫已
他可不是什么救赎,是一个实实在在的深渊,而我,困于深渊,早已见不到阳光后来我在废墟里竟然看见,那处死掉的玫瑰花圃又重新发了芽,我才明白,那是......
1.5万字5个月前
书外的你我是天作之合 连载中
书外的你我是天作之合
璟秋竹
明月几时有?把酒问青天。你是暖阳,是我生命里不可缺失的光,你是早晨的太阳,明亮又耀眼。所以,谢谢你永远选择我。苏淮雪,不论书里书外。(双女主......
0.6万字4个月前
宠,唯爱一生 连载中
宠,唯爱一生
爱吃香草大富婆
人的一生有很多选择,如果让你有机遇你愿意踏入吗?一个规则的制定者,一个规则下的遵守人,如何擦出火花。请问瓦洛克先生愿意娶文文女士,执子之手与......
6.2万字3个月前
排球:姓名 连载中
排球:姓名
AAA掺水苏威瓷兔批发商
涉及排球少年,未定事件簿孤爪研磨+北信介+赤苇京治+佐久早圣臣爱情向梦女+穆子悠亲情向梦女有梦图,谷子,此是梦文【请注意避雷,雷者左上角划走......
0.6万字2个月前
致命的爱啊 连载中
致命的爱啊
whatisyourdream
爱情真的好复杂,不管是兄弟之间的爱情,还是恋人之间的爱情,都是爱情,但他们始终是有区别的,我不可能和弟弟在一起,我爱的人是阿铠,而弟弟应该去......
3.1万字1个月前
ourname 连载中
ourname
木楚晴天
一丢丢科幻,青春的故事,我们在一起的美好日子和一些无法用言语理解的事情
2.3万字2周前