数学联邦政治世界观
超小超大

特殊篇章(数学解释)六

σ完全性和超幂模型的秩:

我们知道如果 S 是一个集合且 U 是 S 的一个超滤,那么 V≺Vˢ/≡U ,但 Vˢ/≡U 是一个有秩的模型吗?关于这个问题我们有如下定理:

定理: U 是 σ 完全的,当且仅当 VS/≡U 有秩的。

证明:假设 U 是 σ 完全的,如果 Vˢ/≡U 是无秩的,那么存在一组函数 {fₙ}ₙ<ω 满足 {x∈S:fₖ₊₁(x)∈fₖ(x)}∈U ,因为 σ 完全性,那么 ⋂ₖ∈ω{x∈S:fₖ₊₁(x)∈fₖ(x)}∈U ;因为 ∅∉U ,因此存在 x∈S 满足 f₀(x)∋f₁(x)∋⋯ ,这与 V 的正则公理矛盾,反证 Vˢ/≡U 有秩。

假设 U 不是 σ 完全的,那么存在 {Aₙ}ₙ∈ω 满足 Aₙ∈U∧⋂ₙ Aₙ ∉ U ,设 Bₙ=Aₙ − ⋂ᵢ∈ω Aᵢ ,那么有 Bₙ∈U∧⋂ₙ Bₙ=∅ ;进一步设 Cₙ=⋂ᵢ≤ₙ Bᵢ ,那么有 Cₙ∈U∧⋂ₙ Cₙ =∅∧Cᵢ ⊇Cᵢ₊₁ 。

定义函数 gᵢ:Cᵢ → ω ,其中 gᵢ(x)=min{k−i:x∉Cₖ} ,对于其它 x∈S−Cᵢ,我们有 gᵢ(x)=0 。注意到 gᵢ₊₁(x)∈gᵢ(x) 当且仅当 x∈Cᵢ ,因此 {x∈S:gᵢ₊₁(x)∈gᵢ(x)}∈U ,则 [g₀]∋*[g1]∋* ⋯ 在 Vˢ/≡U 成立,因此 Vˢ/≡U 是无秩的,定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

春日樱花梦 连载中
春日樱花梦
春粉映蓝
《春日樱花梦》是一部描绘少年小枫在春日小镇上的一段奇妙旅行的小说。故事讲述了小枫在一个樱花盛开的午后,被淡紫色的樱花瓣和古老桥梁所吸引,踏上......
0.2万字1年前
青山不知语(红线) 连载中
青山不知语(红线)
鱼头煲鸡汤
原以为自己是没有父亲的,结果等自己母亲死了才知道母亲谈了一个异世界的人,被接回去的时候才知道,自己还有一个姐姐,但这个姐姐很不喜欢她。可以说......
3.5万字1年前
暮秋雪与云逸永恒的守护 连载中
暮秋雪与云逸永恒的守护
昕愛凌
暮秋雪,神界神女,为拯救苍生耗尽神力而死。临终前,她唯一的遗憾是未曾拥有爱情。于是,她重生为凡间孩童,找到挚友恬莎寻求庇护。与此同时,她的三......
7.5万字9个月前
cult:最后是亲哥哥 连载中
cult:最后是亲哥哥
琼Y
暴力复仇,屠亲,恐怖继续。爱是在谎言和誓言之间徘徊的。把那个同学推下悬崖只是Amy的第一步,亲爱的哥哥Bill,你终于回到这个小镇上来了。我......
8.9万字7个月前
光影大作战 连载中
光影大作战
图灵吃货
 9.16日已签约,请放心食用。传说中的暗之子与光之子不分上下,永世相传,互相抵抗,可是光守护神沐槿叛变光之女,将光宝典献给夜之子。危难之际......
37.6万字7个月前
我靠动物发家致富 连载中
我靠动物发家致富
厌生yan
顾染,一个成功驯服比格犬的英雄人物,至于她是怎么驯服的,当然是超能力啦,没开玩笑,她具有超能力可以和动物沟通,就这样她开了一家宠物店专门解答......
0.3万字5个月前