数学联邦政治世界观
超小超大

特殊篇章(数学解释)八

可数不完全的超滤生成的超幂模型是可数饱和:

事实上我们有比题目更好的条件:假设可数语言 Ը, I 是指标集, U 是 I 上的可数不完全超滤, 𝕬ᵢ 是 Ը 模型,那么 ∏ᵢ 𝕬ᵢ/≡∪=𝕬 是 ω₁ 饱和模型。

证明:假设 B ⊆ A 是一个可数子集, p(x) 是以 B 中元素为参数的一个型,有可数语言可得 p(x) 可数,因此不妨设

p(x)={ψₙ(x,[fₙ₁],⋯,[fₙₖ])}ᵢ<ω (为方便起见,我们设 ψᵢ(x,y→) 中的自由变元个数相同,都为 k+1 )。令 ϕₙ(x)=⋀ᵢ≤ₙ ψᵢ(x) ,由于 p(x) 在 𝕬 中有穷可满足,因此对于任意 n ,都有 𝕬 实现 ϕₙ(x) ,即 Yᵢ={i∈I:𝕬ᵢ ⊨ ∃xϕₙ(x,fₙ₁(i),⋯,fₙₖ(i))}∈U 。

由于 U 是可数不完全的,因此存在序列 X₀⊃⋯⊃Xₙ⊃⋯ 满足 ∀i∈ω,Xᵢ∈U 且 ⋂Xᵢ=∅ ,令 Zᵢ=Xᵢ∩Yᵢ ,那么 Zᵢ∈U∧⋂ᵢ Zᵢ=∅ 。定义 ρ:I→ω 满足 ρ(i)=max{n∈ω:i∈Zn} ,显然有 i∈Zₙ ↔ ρ(i)≥n 。现在我们定义一个函数 g:I→⋃ᵢ Aᵢ ,使得 [g] 实现 p(x) :假设 i∈I∧ρ(i)=0 ,那么令 g(i) 为 𝕬ᵢ 中任意元素;假设 ρ(i)>0 ,那么 𝕬ᵢ ⊨ ∃xϕᵨ₍ᵢ₎(x,fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ(i)n(i)),令 g(i)

满足 𝕬ᵢ ⊨ ϕᵨ₍ᵢ₎(g(i),fᵨ₍ᵢ₎₁(i),⋯,fᵨ₍ᵢ₎ₙ (i)) 。不难看出 [g] 在 𝕬 中实现了 p(x) ,即对于任意 ψ(x)∈p(x) 、都有 {i∈I:𝕬ᵢ ⊨ ψ(g(i))}∈U ,因此定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦境大世界 连载中
梦境大世界
梦颜宁
我自己做的一个梦
0.6万字8个月前
品质少女:情绪精灵 连载中
品质少女:情绪精灵
蕴笺甯
自创的魔法少女的故事(◍•ᴗ•◍)
2.8万字7个月前
厄瑞波斯与光 连载中
厄瑞波斯与光
橋奈洋子
2.4万字6个月前
恋爱的九九八十一面 连载中
恋爱的九九八十一面
春敬惊
有虐男师徒恋正常恋爱与笔下角色相恋...你想看的脑洞它都有
2.1万字4个月前
漫画聊天群(艾宝,小伊,小瑾,七七) 连载中
漫画聊天群(艾宝,小伊,小瑾,七七)
鹿菁娜
这是一个群聊,可投稿。
0.1万字3个月前
我在病娇控制下混成了团宠 连载中
我在病娇控制下混成了团宠
灿灿啊~
这是一部科幻悬疑的小说,&病娇&悬疑&科幻&推理&团宠&穿越,主要讲述了病娇男主与女主琳诗瑶的故事,以及女主是如何一步步攻略各个男主的。内容......
1.4万字2个月前