数学联邦政治世界观
超小超大

良定义(well-defined)

一般我们是在讨论一个函数的时候关注“良定义”(well-defined),为什么呢?假设我们讨论一个关系 R(x,y)⊆A×A (出于简便我们只考察二元关系),我们不用担心是否有 ∀x∃!yRxy 或者其它别的要求,因为任意 P⊆A×A 都是一个关系。但函数就不一样了,我们需要知道 R 到底是不是一个函数,即它是否满足 ∀x∃!yRxy 。

1.1.3设R是W上的二元关系。在例1.2中,我们定义R的自反闭包为R∪{(u,u)|u ∈ W}. 但我们也可以给出类似于这些的定义

1.2模态语言

定义1.6中的R⁺和R*,即它是W上包含R的最小自反关系:

RΓ=∩{R'|R'是W & R ⊆ R'上的自反二元关系}.

解释为什么这个新定义(以及R⁺和R*的定义)是好定义的,证明了自反闭包的两个定义的等价性。最后,证明了R⁺uυ当仅当有一列元素序列u=ω₀,ω₁,. . .,ωₙ=υ 使得对于i<n我们有Rωᵢωᵢ₊₁,给出了自反传递闭包的相似序列定义。

在问题1.1.3中,作者要求我们判断“反射闭包”这个概念是不是良定义的。我们称 S 是 R 的反射闭包,当且仅当 S⊇R 且 ∀x∈dom(S),(x,x)∈S 。作者采用了如下定义方式:

S=⋂{P:P⊇R∧P是反射闭包} ,注意到这个定义方式本身就是定义了从 R 到 S 的函数: R↦S ,因此我们的任务就转化为“ R↦S 这个映射是不是一个函数?”换言之,“是否满足 ∀R∃!S(R↦S) ?”

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

星灵幻影 连载中
星灵幻影
晨曦_51327356096082374
一个女孩的神奇之旅
0.7万字8个月前
玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字8个月前
普朗克尺度 连载中
普朗克尺度
Muriel昭
次要:【双男主】【救赎文】人鱼*机器人卓奈*万西(角色复杂,就这样概括着吧)主要:【未来科幻】【群众*战争】越往后越迷惑,作者属于是已经“疯......
5.4万字5个月前
他呀!万人迷而不自知 连载中
他呀!万人迷而不自知
小鹿叮咚
(原创该书已签约)快穿局萌新言之害怕极了,为什么每个世界的主角都不按套路出牌啊!呜呜呜...
1.3万字4个月前
花痴女配就不能是万人迷了吗 连载中
花痴女配就不能是万人迷了吗
巫筱
【渣女+雄竟修罗场+舔狗文学+多男主买股文】温晴绑定了一个名为舔狗系统的不明生物体。在系统的解释下才明白自己生活在一本名为《师尊别走》的话本......
2.9万字4个月前
这个世界好乱啊——娃娃世界 连载中
这个世界好乱啊——娃娃世界
大作者布丁
大作者和小作者创造了一个世界----娃娃世界,这里发生了很多有趣的故事,是什么呢?快点进去看看吧!
8.8万字昨天