数学联邦政治世界观
超小超大

良定义(well-defined)

一般我们是在讨论一个函数的时候关注“良定义”(well-defined),为什么呢?假设我们讨论一个关系 R(x,y)⊆A×A (出于简便我们只考察二元关系),我们不用担心是否有 ∀x∃!yRxy 或者其它别的要求,因为任意 P⊆A×A 都是一个关系。但函数就不一样了,我们需要知道 R 到底是不是一个函数,即它是否满足 ∀x∃!yRxy 。

1.1.3设R是W上的二元关系。在例1.2中,我们定义R的自反闭包为R∪{(u,u)|u ∈ W}. 但我们也可以给出类似于这些的定义

1.2模态语言

定义1.6中的R⁺和R*,即它是W上包含R的最小自反关系:

RΓ=∩{R'|R'是W & R ⊆ R'上的自反二元关系}.

解释为什么这个新定义(以及R⁺和R*的定义)是好定义的,证明了自反闭包的两个定义的等价性。最后,证明了R⁺uυ当仅当有一列元素序列u=ω₀,ω₁,. . .,ωₙ=υ 使得对于i<n我们有Rωᵢωᵢ₊₁,给出了自反传递闭包的相似序列定义。

在问题1.1.3中,作者要求我们判断“反射闭包”这个概念是不是良定义的。我们称 S 是 R 的反射闭包,当且仅当 S⊇R 且 ∀x∈dom(S),(x,x)∈S 。作者采用了如下定义方式:

S=⋂{P:P⊇R∧P是反射闭包} ,注意到这个定义方式本身就是定义了从 R 到 S 的函数: R↦S ,因此我们的任务就转化为“ R↦S 这个映射是不是一个函数?”换言之,“是否满足 ∀R∃!S(R↦S) ?”

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

一个誓言走一世 连载中
一个誓言走一世
情终须缘
复合√回家√蝶眸殉情黑化……(反正不虐,很甜)一笑倾国,再笑倾城。
10.1万字2个月前
十铭:终致歉——刹那 连载中
十铭:终致歉——刹那
刹那乂
一位少女死后进入游戏开始找回记忆的热血故事“如果我的死,能换到重头再来……”“好久不见”“嗯,好久不见”本书为个人oc世界!原创!禁止抄袭角......
0.4万字2个月前
幻境……春 连载中
幻境……春
绘离
(一个作者幻想出来的美好世界…)收录了三个稿件,会出现霉运体质。
0.2万字1个月前
不公定律—打造无罪世界 连载中
不公定律—打造无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.5万字1个月前
听潮阁:一起去看星星吧 连载中
听潮阁:一起去看星星吧
NeKKo
更新不稳定/圈地自萌/请勿出站欢迎指点/拒绝指指点点北夜是01年最最最好的小孩2.5次元,请勿上升正主三次,可能会有时间线bug/混乱问题,......
2.7万字1个月前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字4周前