数学联邦政治世界观
超小超大

良定义(well-defined)

一般我们是在讨论一个函数的时候关注“良定义”(well-defined),为什么呢?假设我们讨论一个关系 R(x,y)⊆A×A (出于简便我们只考察二元关系),我们不用担心是否有 ∀x∃!yRxy 或者其它别的要求,因为任意 P⊆A×A 都是一个关系。但函数就不一样了,我们需要知道 R 到底是不是一个函数,即它是否满足 ∀x∃!yRxy 。

1.1.3设R是W上的二元关系。在例1.2中,我们定义R的自反闭包为R∪{(u,u)|u ∈ W}. 但我们也可以给出类似于这些的定义

1.2模态语言

定义1.6中的R⁺和R*,即它是W上包含R的最小自反关系:

RΓ=∩{R'|R'是W & R ⊆ R'上的自反二元关系}.

解释为什么这个新定义(以及R⁺和R*的定义)是好定义的,证明了自反闭包的两个定义的等价性。最后,证明了R⁺uυ当仅当有一列元素序列u=ω₀,ω₁,. . .,ωₙ=υ 使得对于i<n我们有Rωᵢωᵢ₊₁,给出了自反传递闭包的相似序列定义。

在问题1.1.3中,作者要求我们判断“反射闭包”这个概念是不是良定义的。我们称 S 是 R 的反射闭包,当且仅当 S⊇R 且 ∀x∈dom(S),(x,x)∈S 。作者采用了如下定义方式:

S=⋂{P:P⊇R∧P是反射闭包} ,注意到这个定义方式本身就是定义了从 R 到 S 的函数: R↦S ,因此我们的任务就转化为“ R↦S 这个映射是不是一个函数?”换言之,“是否满足 ∀R∃!S(R↦S) ?”

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字6个月前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字5个月前
天道?呵,本神女可是创世神! 连载中
天道?呵,本神女可是创世神!
江边月皎皎
啧啧啧,似乎在这个平台修仙文没什么流量啊。...洛璃月自出生以来,就位居高位,受尽宠爱。可就在某一天,她娘亲爹地全都莫名失踪,而她被人掳走。......
0.4万字5个月前
夏芊月与魔法传说 连载中
夏芊月与魔法传说
猫忆蝶
讲的是一位少女,通过自己的努力,慢慢变强的故事
0.7万字3个月前
团宠礼神第一季 连载中
团宠礼神第一季
扶光2010
团宠小七的日常和小葫芦们新的冒险与敌人,及葫芦们腥风血雨的虐恋情仇(主要是我的梦)
3.4万字1个月前
萤讯末期 连载中
萤讯末期
池年陌
人与AI的禁忌之恋
1.7万字2周前