数学联邦政治世界观
超小超大

关于钻石原则的一些讨论

最近在思考钻石原则的一些性质,很好奇这个原则是如何被提出来的,幸运的是我在冯琦的集合论教材上找到了一点指引。

任选不可数正则基数 κ ,设 I 是 κ 上的一个理想,我们称 A,B∈𝕻(κ) 模理想相等当且仅当 A∩B∈I 。定义 NSκ 为 κ 上的全体非平稳集(non-stationary set)构成的集族,根据 κ 正则性可知 NSκ 是 κ 完全的理想。

根据Solovay的工作,我们知道对于任意不可数正则基数 λ 和 λ 的平稳集 S , S 可以分裂为 λ 个不相交的平稳集的并,显然这已经是一个最好的结果了,毕竟 S 不可能分解为 λ⁺ 个不相交的平稳集的并;现在一个拓展的问题是:是否存在 ω₂ 个 ω₁ 的平稳集 {Sα}α<ω₂ 满足 Sα∩Sᵦ∈NSω₁ ?有意思的是这个问题是独立于 ZFC 的,并且与某种大基数理论相关,下面我们证明:如果钻石原则成立,那么该问题的答案是肯定的。

定理:如果钻石原则成立,那么存在 ω₁ 的平稳集族 {Sα}α<2ω₁ 满足 Sα∩Sᵦ∈NSω₁。

证明:令 ⟨Dᵧ:γ<ω₁⟩ 是钻石序列。对于任意 X ⊆ ω₁ ,定义 Sₓ={α<ω₁:X∩α=Dα} ,根据钻石序列定义得 Sₓ 是平稳集。若 Sₓ=Sʏ ,那么 X∩α=Dα ↔ Y∩α=Dα ,由于 Sₓ 无界,因此 ∀α∃β>α(X∩β=Y∩β) ,这就证明了 X=Y ,因此 X↦Sₓ 是单射,这就证明了定理。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字8个月前
01所 连载中
01所
布莱尔绘
防止恶评,作者不特别说明角色们的性别。
0.2万字6个月前
(凹凸)梦境边缘,时之刃 连载中
(凹凸)梦境边缘,时之刃
城dawn
这些看似玩笑的话语,实则是我内心深处最真挚的誓言。有些话,藏在玩笑里,才敢让你听见。————————时斯:这些一定不仅仅是您的梦——————......
1.5万字5个月前
黑白公子 连载中
黑白公子
大姑姥
黑白公子
0.8万字3个月前
世界都要穿成筛子了 连载中
世界都要穿成筛子了
一步至岸
星际时代,基因强化伴随而来的是基因异变的问题,为了解决问题,传送平行世界的人来到星际,研究星际时代前的人与星际时代的人基因不同点,以此解决问......
0.7万字3个月前
浮金树影 连载中
浮金树影
月见夏
慢节奏小甜文。温柔江南美人X香港高傲少爷
1.9万字2个月前