数学联邦政治世界观
超小超大

关于无界闭集的一些讨论

我们知道不可数正则基数的无界闭集有很多好性质,例如 κ 完全性。但无界闭集的这些“好”性质并不来自某些神奇的组合或者拓扑原理,事实上,每一个无界闭集都可以看作是某个函数的闭包。

定理 1 :假设 κ 是一个不可数基数, f:κ → κ ,那么 Cf={α:∀β<α(f(β)<α)} 是无界闭集。

证明:定义 g(α)=sup{f(β):β<α} ,由于 cf(κ)=κ ,因此 dom(g)=κ 。任选 δ<κ ,令 gⁿ⁺¹(δ)=g◦gⁿ(δ) 和 θ=gω(δ) ,由于 κ 正则,因此 θ∈κ ,不难证明 θ 对 f 封闭,因此 Cf 无界。假设 Cf∩δ 在 δ 之下无界,那么 γ<δ →∃η∈Cf(γ<η) ,因此 f(γ)<η<δ ,则 δ∈Cf 。 ⊣

定理 2 :假设 g:[κ]<ω → κ ,那么 Cg={α:∀e∈[α]<ω(g(e)∈α)} 是无界闭集。

证明:定义 h(α)=sup{g(e):e∈[α]<ω} ,由 κ 正则性可得 dom(h)=κ ,类似于定理 1 可证定理 2 成立。 ⊣

定理 3 :若 f 单调递增且连续,那么 Cf={α:f(α)=α} 是无界闭集。

证明:任选 δ<κ ,令 δₙ₊₁=f(δₙ)+1 和 θ=⋃ₙ δₙ ,由于 f(θ)=supₙ f(δₙ)=θ ,因此 Cf 无界;假设 Cf∩α 在 α 之下无界,由 f 连续性可得 α∈Cf ,定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

小甜文双男主合集 连载中
小甜文双男主合集
速成鸡
双男主短篇小合集
6.5万字6个月前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
2.8万字5个月前
(科幻万人迷)渣女改造系统 连载中
(科幻万人迷)渣女改造系统
吃人不放盐23
—这是一个社会潜在型人渣,被一个莫名奇妙的系统培养成社会栋梁最后成神的故事—林一览一直都知道自己不是个好东西,但从来没有想过,自己会因为渣得......
1.7万字6个月前
重生虐缘 连载中
重生虐缘
墨香书蕴
纯情小师弟&绝情仙尊,沈淮上一世因为情爱入魔被自己喜欢的师尊亲手了结,重生一世,他依旧喜欢师尊,只不过保持一定的距离,长此以往师尊倒先不乐意......
1.8万字4个月前
仙途莓影之蛇莓传奇 连载中
仙途莓影之蛇莓传奇
屑榵榵
蛇莓的冒险计划,
67.5万字3周前
虚拟男友太气人 连载中
虚拟男友太气人
杨小八
为拒绝孤寡小青蛙,选择虚拟男友快速脱单,没想到这个男友会气人!甜甜的恋爱也太难了吧!
0.9万字2周前