数学联邦政治世界观
超小超大

特殊篇章(数学解释)九

L[U]中的GCH

我们之前在文章中证明了:如果 V=L[A] ,那么GCH在某个足够大的序数 γ 中成立。这个定理可以进一步的加强:假设 U 是可测基数 κ 的正规完备超滤且 V=L[U] ,那么 L[U]⊨GCH 。

证明:反证法,假设 L[U] ⊨ 2θ>θ⁺ ,由于 L[U] 满足全局选择公理(global axiom of choice),因此可以定义 X 是第 θ⁺ 个 θ 的子集。令 α 是最小的满足 X∈Lα[U] 的序数,那么有 |𝕻(θ)∩Lα[U]|≥θ⁺ 。令 η>α 满足 U∈Lη[U] ,定义 P=𝕻(θ)∩Lη[U] ,由于所有可测基数都是Ramsey基数且 P(θ)<κ ,根据文章,存在模型 A≺Lη[U]满足: A∩κ∈U 、 |A∩P|≤θ 、 |A|=κ 和 {X,U,α}∪θ⊆A 。令 𝕭≅𝕬 且 B=π[A] ,根据凝聚性引理可得 B=Lᵦ[π(U)] ,下面证明 π(U)=U∩B :由于 A∩κ∈U ,因此 π(κ)=κ ;由于 U 是正规超滤,因此 π(ξ)≤ξ ,那么 Y={ξ:π(ξ)=ξ}∈U ,现在假设 Z∈A∩U ,那么 π(Y∩Z)=Y∩Z∈U ,因此 π(Z)∈U∩B ,所以 π(U)=U∩B 。由于 π(U)=U∩B ,因此 B=Lᵦ[U∩B] ,即 B=Lᵦ[U] 。

由于 θ⊆B ,因此 Y∈𝕻(θ)∩A → π(Y)=Y∈B ,则有 |B∩P|≤θ ,但这是一个矛盾:一方面, π(X)=X∈B ,由 α 的极小性可得 α≤β ,则 |Lᵦ[U]∩𝕻(θ)|≤θ ;另一方面有 |𝕻(θ)∩Lα[U]|≥θ⁺ ,矛盾,反证定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

(科幻万人迷)渣女改造系统 连载中
(科幻万人迷)渣女改造系统
吃人不放盐23
—这是一个社会潜在型人渣,被一个莫名奇妙的系统培养成社会栋梁最后成神的故事—林一览一直都知道自己不是个好东西,但从来没有想过,自己会因为渣得......
1.7万字5个月前
勿入混圈 连载中
勿入混圈
段筱玖
女主段筱筱的作死之路
0.2万字5个月前
他说北方有神鹿 连载中
他说北方有神鹿
厌色鹿鸣
【群像】谁苍白了我的等待,讽刺了我的执着。世人皆知四大雅:颜君抱花,公子斩妖,女帝弃剑,云鹤降世。却不知的是:颜君抱花,太子心动,却终是一出......
24.4万字4个月前
锌火燃烬 连载中
锌火燃烬
星诗岸
0.7万字2个月前
景西苑 连载中
景西苑
桉婕大树
不喜勿喷,四男主,修仙+重生司景与顾悬等人携手修仙,在终于成神之际,两人双双陨落,却受到了魔界的影响,重回人世间。这时,洛衍西出现了,在司景......
1.0万字2个月前
致命的爱啊 连载中
致命的爱啊
whatisyourdream
爱情真的好复杂,不管是兄弟之间的爱情,还是恋人之间的爱情,都是爱情,但他们始终是有区别的,我不可能和弟弟在一起,我爱的人是阿铠,而弟弟应该去......
3.1万字1个月前