数学联邦政治世界观
超小超大

特殊篇章(数学解释)九

L[U]中的GCH

我们之前在文章中证明了:如果 V=L[A] ,那么GCH在某个足够大的序数 γ 中成立。这个定理可以进一步的加强:假设 U 是可测基数 κ 的正规完备超滤且 V=L[U] ,那么 L[U]⊨GCH 。

证明:反证法,假设 L[U] ⊨ 2θ>θ⁺ ,由于 L[U] 满足全局选择公理(global axiom of choice),因此可以定义 X 是第 θ⁺ 个 θ 的子集。令 α 是最小的满足 X∈Lα[U] 的序数,那么有 |𝕻(θ)∩Lα[U]|≥θ⁺ 。令 η>α 满足 U∈Lη[U] ,定义 P=𝕻(θ)∩Lη[U] ,由于所有可测基数都是Ramsey基数且 P(θ)<κ ,根据文章,存在模型 A≺Lη[U]满足: A∩κ∈U 、 |A∩P|≤θ 、 |A|=κ 和 {X,U,α}∪θ⊆A 。令 𝕭≅𝕬 且 B=π[A] ,根据凝聚性引理可得 B=Lᵦ[π(U)] ,下面证明 π(U)=U∩B :由于 A∩κ∈U ,因此 π(κ)=κ ;由于 U 是正规超滤,因此 π(ξ)≤ξ ,那么 Y={ξ:π(ξ)=ξ}∈U ,现在假设 Z∈A∩U ,那么 π(Y∩Z)=Y∩Z∈U ,因此 π(Z)∈U∩B ,所以 π(U)=U∩B 。由于 π(U)=U∩B ,因此 B=Lᵦ[U∩B] ,即 B=Lᵦ[U] 。

由于 θ⊆B ,因此 Y∈𝕻(θ)∩A → π(Y)=Y∈B ,则有 |B∩P|≤θ ,但这是一个矛盾:一方面, π(X)=X∈B ,由 α 的极小性可得 α≤β ,则 |Lᵦ[U]∩𝕻(θ)|≤θ ;另一方面有 |𝕻(θ)∩Lα[U]|≥θ⁺ ,矛盾,反证定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字2个月前
惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字2个月前
御妖诀 连载中
御妖诀
月无年
“苏荼…你骗的本王好苦啊…”他等了她三万年,换来的,只是一副空壳罢了。那个曾经爱笑的苏荼,如今变成了杀人的刀。在面对君临御的时候,你的剑也会......
6.3万字2个月前
白梓萱与王静 连载中
白梓萱与王静
白梓萱54341348
“东关小学就像那五只小羊一样,快乐,幸福,美丽”“只有露西,并不像只小羊”“东关小学又是一个美丽团结的羊村”“善良团结”“有时候村里也可能混......
0.2万字2个月前
风吹过十八 连载中
风吹过十八
把作业装进篮子
嫦安…长安,预想平平度过时光,可奈何跌跌撞撞
0.7万字1个月前
虚妄之国 连载中
虚妄之国
儚镜
如果在这个世界上,身边的所有人都否认一个你熟识的人的存在,且看不见她时,她找上了你,你该怎么办?是平行世界?亦或是自己的臆想?这个世界就是虚......
0.5万字1个月前