数学联邦政治世界观
超小超大

朴素集合论还有什么问题?

前提:朴素集合论认为任何语句P(x)都可以组成一个集合.

1) Curry Paradox

令X={x|x∈x → 0=1}.我们做出如下推理:

1.X={x|x∈x → 0=1}这个是X的定义

2.x=Ⅹ → (x∈x ↔ X∈X)这个是等价置换

3.x=X → ((x∈x → 0=1) ↔ (X∈X → 0=1)这个是2的弱化

4.X∈X ↔ (X∈X → 0=1)这个是X的定义

5.X∈X → (X∈X → 0=1)这个是4的半边

6.X∈X → 0=1这个是根据5以及 p → (p → q) ⊢ p → q

7.(X∈X → 0=1) → X∈X这个是4的另外一个半边

8.X∈X这个根据6和7得出

9.0=1 这个根据6和8得出.

2) Paradox of Grounded Sets:

称一个集合x为groundless, 当且仅当存在一系列的集合x₁,x₂,. . .,xₙ 使得 . . . ∈ xₙ₊₁ ∈ xₙ ∈ xₙ₋₁ ∈. . .∈ x₂ ∈ x₁ ∈ x.一个集合为grounded当且仅当它不为groundless. 我们令P(x)为"x is grounded", 并且考虑 y={x|P(x)}.

问题: y是不是一个grounded set?

如果是的话, 那么根据定义, y属于y. 所以 . . .∈y∈y∈. . . ∈y∈y 此时根据定义, y不是一个grounded set. 得到矛盾. 如果y不是grounded set, 则存在一系列的集合 y₁,y₂,. . .,yₙ 使得 . . .∈ yₙ₊₁ ∈yₙ ∈yₙ₋₁ ∈. . . ∈ y₂ ∈y₁ ∈y. 那么可得 y₁ 为groundless set. 但是根据定义, y只包含了grounded sets, 所以得到矛盾.

3) Paradox of Non-circular Sets:

对于任意自然数n, 称一个集合为n-circular, 当且仅当存在集合 x₁,x₂,. . .,xₙ₋₁,使得x ∈ xₙ₋₁ ∈ xₙ₋₂ ∈. . .∈x₂∈x₁∈x . 称一个集合x为circular, 当且仅当存在自然数n使得x为n-circular. 一个集合为non-circular当且仅当它不为circular. 令P(x)作"x is non-circular", 并且考虑 y={x|P(x)}

问题: y是不是non-circular set?

假设是: 则y∈y,所以y为1-circular. 得到矛盾

假设不是: 则y为circular, 所以存在集合y₁,y₂,. . .,yₙ₋₁ 使得 y∈yₙ₋₁ ∈ yₙ₋₂∈. . .∈y₂ ∈ y₁∈y .若n=1, 我们则有 y∈y,因为y只包含non-circular的集合, 所以得到矛盾. 若n>1, 我们则有 y₁∈y∈yₙ₋₁ ∈ yₙ₋₂ ∈. . .∈y₂ ∈ y₁ ∈y,所以 y₁ 为circular,并且 y₁ ∈ y . 这与y的定义矛盾.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

云与夜 连载中
云与夜
琪琪拉
哎嘿!甜甜甜!轻微ABO
2.3万字2个月前
神明予我岁岁平安 连载中
神明予我岁岁平安
长遥
“等你回到天上,可以让我做地上的文曲星吗?”“我只愿你岁岁平安。”
0.2万字1个月前
零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字1个月前
喜美:我在恐怖游戏里当主角 连载中
喜美:我在恐怖游戏里当主角
雾小渺wu
「喜美同人文01」——推推隔壁《喜美:童话镇》/本书开写于2024.9.4【不定时更新】-宋喜星×简喻美【双强】[双强+HE+爽文+幻想]-......
2.2万字1个月前
原创终极一家之爱会不会痛 连载中
原创终极一家之爱会不会痛
旭梦如夏
我是敏敏爱博君禁止辱骂禁止上升真人,原创不易,重新写,夏美崩溃失去哥哥是否接受令团长的喜欢,夏美当盟主,孙权很爱夏美这个大姐,还有阿香,周瑜......
9.0万字1个月前
无限流——这个NPC是如此的独特 连载中
无限流——这个NPC是如此的独特
彼岸之舟*
作为无限流游戏中的固定NPC,白景欢在同一个故事里轮回过许多次,也遇见过许多人,可那些都不是他所期盼的。直到有一天,他觉醒了意识,也再次见到......
21.1万字4周前