数学联邦政治世界观
超小超大

Kronecher定理

1.若θ ∈ ℝ – ℚ,α ∈ [0,1), 则 ∀ϵ>0,∃n ∈ ℤ,s.t│<ϵ.

引理:

∀x,y ∈ ℝ,0 ≤ α {x}+b{y}<1 ⇒ α{x}+b{y}={αx+by}.

引理证明:

x=[x]+(x),y=[y]+{y} ⇒ αx+by=(α[x]+b[y])+(α{x}+b{y})

因为(α[x]+b[y]) ∈ ℤ,且 0 ≤ (α{x}+b{y})<1,所以 α{x}+b{y}={αx+by}.

证明:对于序列{{kθ}}⁺∞ ₖ₌₋∞ ,断言 ∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ} .

否则反设{k₁θ}={k₂θ} ,则 k₁θ – k₂θ=k ∈ ℤ

k

⇒ θ = ─── ∈ ℚ.

k₁ – k₂

矛盾,故

∀k₁,k₂ ∈ ℤ,k₁ ≠ k₂,{k₁θ} ≠ {k₂θ}.

1 1 2

[0,1)=[0,─ )∪[ ─,─ )∪ · · · ∪[0,1)

n n n

因为{{kθ}}ⁿ⁺¹ₖ₌₁ 中各项两两不相等,所以由抽屉原理可以得 ∃n₁,n₂ ∈ {1,2,· · ·,n+1}

1

,n₁ ≠ n₂,s.t.丨{n₁θ} – {n₂θ}<─.

n

令 d=|{n₁θ} – {n₂θ}|,则 ∀ϵ>0

1 1

,∃N=mαx{[─],[───]} ∈ ℕ,

2ϵ 2(1 – α)

[公式]

1

|l|{n₁θ} – {n₂θ} | – α|<─ ⇒ l|{n₁θ} – {n₂θ}

2n

1

│<─+α<1.

2n

i.当l=0 时: |α|<ϵ.

∀ϵ>0,∃0 ∈ ℤ,s.t|{0θ} – α|<ϵ.

ii.当l ≠ 0 时:由引理可得

{{l(n₁ – n₂)θ},{n₁θ}>{n₂θ},

l|{n₁θ} – {n₂θ}│= :={lmθ}.

{l(n₂ – n₁)θ},{n₂θ}>{n₁θ}.

|{lmθ} – α|<ϵ,lm ∈ ℤ.

命题1成立.

2.Kronecher定理:若θ ∈ ℝ – Q,α ∈[0,1), 则∀ϵ>0,∃n ∈ ℕ,s.t. | {nθ} – α|<ϵ.

证明:若∀ϵ>0,∃n₁ ∈ ℤ – ℕ⁺ ∨ ℕ,s.t. |{n₁θ} – α|<ϵ.

|{n₁θ} – α|<ϵ ⇔ |{n₁θ} – α|<ϵ ⇔

│– {–n₁θ}+1 – α|<ϵ ⇔ |{–n₁θ} – (1 – α)|<ϵ.

由于 α 是区间 [0,1] 上的任意一个实数,所以 1 – α 也是区间 [0,1] 上的任意一个实数,所以 ∀ϵ>0,∃n₁ ∈ ℕ,s.t. | {n₁θ} – α|<ϵ. ⇔ ∀ϵ>0,∃n₁ ∈ ℤ – ℕ⁺,s.t.|{n₁θ} – α|<ϵ.

两个命题同时成立或同时不成立,命题1的成立保证了上述两个命题成立,证毕。

推论:1.若θ ∈ ℝ – ℚ,则{{kθ}}⁺∞ₖ₌₁ 在 [0,1)上是稠密的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字2个月前
小甜文双男主合集 连载中
小甜文双男主合集
速成鸡
双男主短篇小合集
6.5万字2个月前
all源:疯批实验体 连载中
all源:疯批实验体
鸢源儿
疯批病娇六人✘单纯张
4.0万字1个月前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字1个月前
异世中原 连载中
异世中原
上官青鹤
异世界日记
0.2万字2个月前
梦境大世界 连载中
梦境大世界
梦颜宁
我自己做的一个梦
0.6万字1个月前