数学联邦政治世界观
超小超大

Sidorenko猜想

Sidorenko猜想可能是最近一些年,在极值组合领域里冉冉升起的一个重要猜想,或者已经可以认为是一个中心的猜想了。因为除了它本身在极值图论领域的重要性以外,他与若干其它数学分支有紧密的联系,甚至,它与诸如量子场论,量子化学,统计力学等其他科学领域有所关联。因为暂时身边,或者国内我还没有能够认识对这个猜想感兴趣的同行,所以今天想抛砖引玉一下,说不定可以吸引对这个猜想感兴趣的老师同学,一起聊聊这个问题。

给定一个图结构 H ,我们想知道在一个给定点数 n 和边密度 p 的图 G 里,能包含这个结构图 H 的数目最小值是多少。出乎意料的是,即使当 H 是最简单的三角形时,这个问题也是高度的困难的!在2007年左右,Razborov解决了当 H=K₃ ,也就是三角形的情况。非常值得一提的是,著名的Flag Algebra的方法就是由此提出的。后来人们开始从 K₃ 向一般的完全图 Kᵣ 的研究,2008年, K₄ 的问题被解决,而直到2012年,普林斯顿大学的Christian Reiher渐近意义上解决了这个猜想,文章于2016年发表在数学领域顶尖刊物Annals of Mathematics上。2018年,我的偶像Warwick大学的刘鸿老师和合作者一起,对 K₃ 的问题进行了更细致的分析,写了一篇长为144页的Journal paper,于2020年发表在顶级刊物Forum of Mathematics, Pi上。

接下去我们把注意力放到Sidorenko猜想上,Sidorenko猜想描述的是上述问题中,当H 为二部图的情况。并且我们需要介绍一些关于图同态的概念。

一个从H 到 G 的图同态(Homomorphism),指得是从 V(H) → V(G) 的一个保持连边关系的映射 f (map)。这里保持连边关系是指当 u,υ 在图 H连边,则f(u) 和 f(υ) 在图 G 中连边。再说一个同态密度的概念,对于给定的图 H G ,记他们的同态密度为 t(H,G) ,指的是,我们均匀随机选择一个从 V(H) → V(G)的映射,它是个从 H 到 G 的同态的概率。用数学表达式就是说:

|{f:V(H) → V(G)}:f is αhomomorphism from H to G}|

t(H,G)= ────────────

|V(G)|ᵛ⁽ᴴ⁾|

所以,Sidorenko猜想就是下面这个样子:

Sidorenko Conjecture:

t(H,G) ≥ t(K₂,G)|ᴱ⁽ᴴ⁾|.

当然如果你不喜欢概率密度这种写法,耶可以直接写成数同态的样子。比如说如下,

Sidorenko Conjecture:[公式] 对给定的图 H 和 G ,从 H 到 G 的同态数目至少有

2|E(G)|

(───)|ᴱ⁽ᴴ⁾| · |V(G)|ᵛ⁽ᴴ⁾|

|V(G)|²

当然,我们也可以用Graphon或者更分析的语言去表达这个猜想。

比如说,令μ 是 [0,1] 上的一个勒贝格测度,令 h(x,y) 是一个在 [0,1]² 的有界非负对称可测函数。令 H 是一个左边 u₁,u₂,. . .,uₜ,右边为 υ₁,υ₂,. . .,υₜ 的二部图, m=|E(H)| ,那么分析语言的Sidorenko猜想可以描述为:

Sidorenko Conjecture:

∫ ∏ h(xᵢ,yⱼ)dμˢ⁺ᵗ ≥ (∫ hdμ²)ᵐ

(i,j)∈E

我们抛开上面那些复杂的数学语言和形式,Sidorenko猜想本身是极其美丽的。注意到,我们要考虑的问题本身是,给定一个二部图 H ,我们想知道在一个给定点数 n 和边密度 p 的图 G 里,能包含这个结构图 H 的数目最小值是多少? Sidorenko猜想是说,当 G 是一个给定边密度的随机图的时候,结构图 H的数目在渐近意义下是最小的。

下面介绍一些已知的结果。

1. Sidorenko本人在1993年证明了当 H 是完全二部图 Kₛ,ₜ ,偶圈 C₂ₖ ,树时,该猜想成立。

2. Hatami在2010年证明了Cube满足Sidorenko猜想。

3. 关于该猜想的第一个大突破来源于Conlon-Fox-Sudakov,他们证明了若 H 这个二部图中,存在一个点与另一部的点全部连边,那么这个 H 满足Sidorenko猜想,这篇文章与2010年发表在GAFA,从投稿到接收只用了1个月。他们利用的就是Dependent Random Choice(话说我发现用这个方法的paper有很大的概率能提高审稿人的阅读兴趣与审稿效率)。

4. 利用entropy method,Li和Szegedy证明了一个更大的图类reflection trees满足Sidorenko猜想。他们只要利用了logarithmic convexity inequalities。文章发表在Combinatorica。

5. Conlon,Kim,J.Lee 和C.Lee将4的结果推广到了更广的一些图,称之为tree-arrangeable graphs。有几篇文章发表在JLMS,Advance,Trans AMS等期刊

6. 最近,Conlon和它的博士生Lee研究了关于Subdivision of complete graph,证明了其也满足Sidorenko猜想。以及一些相关的新图类,文章发表在Discrete Analysis上。

7. 我在梦里幻想过我证完了这个猜想,不知道是不是真的。

哈代曾经说过,There is no permanent place in the world for ugly mathematics。我感觉Sidorenko猜想本身就是个非常beautiful的猜想。关于这个猜想,我想任何的进展都会被认为是improtant的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

道藏玄止 连载中
道藏玄止
云舟隐鹤
腹黑疯批事业派女主披荆斩棘,干翻倒霉亲戚,打趴狐狸窝长老会,与魔王男主相爱相杀的故事。【注意】本文群像风,除男女主外有多对cp,各种都有,但......
71.7万字9个月前
三世情缘之重生后我竟成了仇敌首徒 连载中
三世情缘之重生后我竟成了仇敌首徒
洛安歌
一万年前,他们是伴侣却不得善终。第二世他们没认出彼此站在对立面。今生为师徒。在仇恨与爱慕之情徘徊,难以抉择。
2.8万字8个月前
末世:新星 连载中
末世:新星
诺尔塔斯
主角在末世重新成长建立三观结交朋友共同创建人类命运共同体的过程。——————背景介绍:一个贪玩的高维生物不小心将一个使宇宙的再生平行世界的能......
2.3万字7个月前
替罪者与湖泊 连载中
替罪者与湖泊
老咸鱼没加盐
远在涅哥摩亚的私家侦探埃里仕•纳尔菲特收到了自己表妹失踪的讯息。有人寄来了让他前往汉姆尼调查表妹的下落,并支付了一笔高昂的佣金。然而当他着手......
7.7万字6个月前
你是真的狗啊! 连载中
你是真的狗啊!
倜傥二哈
身为修真界最后的一只天狼,瞿闻本打算就这么吃吃睡睡过完一生,直到有一天,他捡到了一本书。书中好巧不巧也有个叫瞿闻的天狼,这个“瞿闻”只出场了......
1.1万字4个月前
背叛星云(全集) 连载中
背叛星云(全集)
侠客叶希
《背叛者,退出(全集)》的另一个星空版本喜欢的宝宝们快来呀
1.1万字4个月前