数学联邦政治世界观
超小超大

Learning theory by Zhangtong

3.1 PAC learning

• 只针对concept class:布尔值函数

• 针对concept class里面的任意函数和任意数据集,可以在多项式复杂度下把它学出来。

3.2 Analysis of PAC

• Generalization error:此时还是在distribution期望下的sign function。它可以被所有函数empirical mean 和true mean的最大值给bound住。

• Union bound:函数数量有限时,可以一起bound:

CHAPTER 3.UNIFOR CONVERGENCE 32

Proposition 3.5(Union Bound).Consider m eυents E₁,. . .Eₘ.The fοllοωing probαbility inequαlity holds:

Pr(E₁∪· · ·∪ Eₘ) ≤ ∑Pr(Eⱼ).

ⱼ₌₁

• 对每个函数empirical mean error和true mean error 之间的差,用第二章的chernoff bound就可以了。

• 最后,如果还是想知道true mean error,只要保证empirical mean error足够下就行。

Theorem 3.6. Consider α concept clαss C ωith N elements. With probαbility αt leαst 1 – δ,the ERM PAC leαrner (3.1) ωith

2 ln(N/δ)

ϵ'=γ² ─────

n

2

for some γ>0 sαtisfies

2 ln(N/δ)

err ᴅ(f) ≤ (1+γ)² ─────

n

Realizable PAC,finite case

3.3 Empirical Process

三大问题:

1. general non-binary-valued function classes which may contain an infinite number of functions。

2. non-realizable case wheref∗(x) /∈ C

3.the observation Y contains noise

• 首先就是扩展不再是binary-valued。引入loss-function:ф(ω,z) .ERM methods 能保证的是

ф(ω,Sₙ) ≤ inf ф(ω,Sₙ)+ϵ'.

ω∈Ω

Training error

下面这个引理保证generalization error:

Lemma 3.11. Assume thαt for αny δ ∈ (0,1), the fοllοωing nifοrm conυergence result holds ωith some α>0 (ωe αllοw α to depend on Sₙ). With prοbαbility αt leαst 1 – δ₁,

∀ω ∈ Ω:αф(ω,D) ≤ ф(ω,Sₙ)+ϵₙ(δ₁,ω).

Mοreουer,∀ω ∈ Ω the fοllοωing inequαlity holds ωith some α'>0(ωe αllοω α' to depend on Sₙ). With prοbαbility αt leαst 1 – δ₂,

ф(ω,Sₙ)<α'ф(ω,D)+ϵ'ₙ(δ₂,ω).

Then the fοllοωing stαtement hοlds. With prοbαbility αt leαst 1 – δ₁ – δ₂,the αpproximαte ERM method (3.7) sαtisfies the orαcle inequαlity:

αф(ω,D) ≤ inf [α'ф(ω,D)+ϵ'ₙ(δ₂,ω)]+ϵ'+ϵₙ(δ₁,ω). ω∈Ω

可以证明PAC learning所给出的(ω,x) 能满足引理3.11的条件,即便最优解不再concept class中。

注意这里第一条是uniform convergence,而第二条是individual的,不需要乘以函数个数。

以上解决了non-binary-valued function 和∗(x) /∈ C的问题。

3.4 Covering number

提出了Lower bracket cover来解决有无穷多个函数的问题。

Corollary 3.15. Assume thαt ф(ω,z) [0,1] for αll ω ∈ Ω αnd z ∈ Z. Let g=Let ↅ={ф(ω,z):ω ∈ Ω). With probαbility αt leαst 1 – δ,the αpprοximαte ERM methοd(3.7) sαtisfies the (αdditiυe) οrαcle inequαlity: ф(ω,D) ≤ inf ф(ω,D)

√2ln(2Nʟʙ(ϵ,ↅ,L₁(D))/δ)

+ϵ' +inf [ϵ+─────────

ϵ>0 n

Mοreουer,ωith prοbαbility αt leαst 1 – δ,ωe hαυe the fοllοωing (multiplicαtiυe)

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦断南宫 连载中
梦断南宫
梦境之旅_
生命只有一次,又或许平行世界有无数次。一诺的妈妈会在另个世界依旧陪伴一诺吗?
13.4万字2个月前
相遇和你 连载中
相遇和你
樱三
李云天为天玄宗立下了汗马功劳,原本是天玄宗宗主继承人,却没想到被宗门弟子嫉妒惨遭暗算,迫不得已打开了异世界的通道,将自己元神分离进入了这个异......
4.2万字2个月前
魔神对决 连载中
魔神对决
191***612
为了战胜邪恶势力,叶寻与千颜克服重重困难去寻找上古神兽,只为最终一战,给世界一个和平。
10.3万字2个月前
白梓萱与王静 连载中
白梓萱与王静
白梓萱54341348
“东关小学就像那五只小羊一样,快乐,幸福,美丽”“只有露西,并不像只小羊”“东关小学又是一个美丽团结的羊村”“善良团结”“有时候村里也可能混......
0.2万字2个月前
恋与伤 连载中
恋与伤
D王后
玄幻+虐恋+权谋+命相系+一本坏人泛滥的小说。讲述了四个大陆之间的感情纠葛。长篇小说!在欺骗,利用,谎言,杀戮,绝情中渲染虐的爱恋。每一次相......
78.0万字1个月前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字1个月前