数学联邦政治世界观
超小超大

CAT空间

给定,以 κ ∈ ℝ,以 Mⁿκ 表示如下度量空间:(1)若κ=0,则 Mⁿ₀ 是欧氏空间 𝔼ⁿ;

(2)若κ>0,则 Mⁿκ 是由球面 𝕊ⁿ 上以度量

1

乘常数 ── 所得;

√κ

(3)若κ<0,则 Mⁿκ 是由双曲空间 ℍⁿ 上以

1

度量乘常数 ── 所得.

√–κ

度量空间X 中的测地三角形 Δ 由三个顶点 p,q,r∈X 和三条连接它们的测地线即边 [p,q],[q,r],[r,p] 构成,记作 Δ(p,q,r). 在 M²κ 中,如果

d(ˉp,ˉq)=d(p,q) d(ˉq,ˉr)=d(q,r) d(ˉr,ˉp)=d(r,p),

则称ˉΔ=Δ(ˉp,ˉq,ˉr) 为 Δ=Δ(p,q,r) 的相较三角形 (comparison triangle). 当 Δ 的周长 d(p,q)+d(q,r)+d(r,p) 小于 2 倍 M²κ 的直径 Dκ,则上述三角形 ˉΔ ⊂ M²κ 一定存在,且在等距同构意义下惟一[1]. 对于 x ∈ [p, r],若 d(q,x)=d(ˉq,ˉx) 则称点 ˉx ∈ [ˉq,ˉr] 为 x 的相较点 (comparison point). 若 p ≠ q 且 p ≠ r,则 Δ 在点 p 的角是测地线 [p,q] 和 [p,r] 之间在点 p 的 Alexandrov 角.

定义 1. 令 X 为度量空间,给定 κ ∈ ℝ. 令 Δ 为 X 上周长小于 2Dκ 的测地三角形,ˉΔ ∈ M²κ 为其相较三角形. 若对任意 x,y ∈ Δ 和任意相较点 ˉx,ˉy ∈ ˉΔ 有 d(x,y) ≤ d(ˉx,ˉy),则称 Δ 满足 CAT(κ) 不等式. 以下两种情况称 X 是 CAT(κ) 空间,或简称 X 是 CAT(κ).

(1)当 κ ≤ 0 时,测地空间 X 中所有测地三角形满足 CTA(κ) 不等式;

(2)当κ>0 时,X 是 Dκ-测地空间[2],且其中周长小于 2Dκ 的测地三角形满足 CAT(κ) 不等式.

q ˉq

↙ ↘ ↙ ↘

x ↙ r ˉx ˉr

↙ ↖ ↙ ↖ ↙

p ←y ˉp ← ˉy

定义 2. 对于一个度量空间 X,若它为局部 CAT(κ) 空间,即对于任意 x ∈ X,存在 rₓ>0 使得球 B(x,rₓ) 及其所诱导的度量是 CAT(κ) 空间,则称 X 的曲率 ≤ κ. 当 X 的曲率 ≤ 0 时,则称其为非正弯曲的 (non-positively curved).

命题 3. 令 X 为 CTA(κ) 空间.

(1)对于任意一对点x,y ∈ X 的测地线(若 κ>0 要求 d(x,y)<Dκ),存在惟一连接它们的测地线,且该测地线随其端点连续变化.

(2)在X 中任一长度至多为 Dκ 的局部测地线是测地线.

(3)在X 中半径小于 ── 的球是凸的

2

,即球中任意两点可由惟一包含于该球的测地线连接.

(4)在X 中半径小于 Dκ 的球是可缩的.

(5)对于任意λ<Dκ 和 ε>0,存在 δ=δ(κ,λ,ε) 使得若 m 是满足 d(x,y) ≤ λ 的测地线 [x,y] ⊂ X的中点,且

max{d(x,m'),d(y,m')}

1

≤ ─ d(x,y)+δ.

2

则d(m,m')<ε.

推论 4. 对于 κ ≤ 0,任意 CAT(κ) 空间是可缩的. 特别地,它是单连通的且其高阶同伦群都是平凡的.

参考

1. 参见 Metric Spaces of Non-positive Curvature, Ⅰ.2.13, Bridson 和 Haefliger 著

2. 即任意距离小于 D_κ 的两点可由测地线相连

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

疯子又来啦! 连载中
疯子又来啦!
星之曰月
修仙小说,随便磕回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是相遇还恩人。二世帮协将死人,长貌如吾一相......
2.3万字2个月前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字2个月前
雾灵念学院 连载中
雾灵念学院
雪酷
全职猎人的现象系番外,没有特定的主角
1.3万字2个月前
天天暴富APP 连载中
天天暴富APP
奈斯木拉
(已签约+万华镜文社)暴富第一天,到账500万。暴富第二天,到账魔方手表一枚。暴富第三天,到账海城别墅一套。暴富第四天,到账无限额卡一张。…......
26.6万字2个月前
斗龙战士2之东方末与云知画 连载中
斗龙战士2之东方末与云知画
云知画
正义顽强的东方末和明媚坚毅的云知画从一开始的毒舌相向,到并肩经历种种困难与生离死别,最终成为彼此生命中不可或缺的“soulmate”的故事。......
1.9万字1个月前
暶夜 连载中
暶夜
槑槑乐
我从深渊里来为了生存为了自由为了更迭
6.3万字1个月前