数学联邦政治世界观
超小超大

Fubini定理

(X,Σ₁,μ₁),(Y,Σ₂,μ₂)是两个 σ 有限测度空间, X × Y,Σ₁ × Σ₂,μ₁ × μ₂) 为其乘积测度空间,因而也是 σ 有限的。对于乘积空间上的一个可测函数 f ,我们要问,对于固定的 x∈X , f(x,·) 作为 (Y,Σ₂,μ₂) 上的函数是否可测,如果可测,其积分 g(x)=∫ʏ f(x,·) dμ₂(y) 作为 x 的函数在 (Y,Σ₁,μ₁) 上是否可测,如果可测,是否有 ∫x gdμ₁(x)=∫x × ʏ fdμ₁ × μ₂?Fubini定理的核心就是要回答上述基本问题。

引理1. 若μ₁,μ₂ 有限,∀E ∈ Σ₁ × Σ₂,x ∈ X ,E(x,·)={y∈Y:(x,y)∈E}称为 E 在 x 处的截面集,则 ∀x ∈ X,E(x,·) ∈ Σ₂,l(x)=μ₂(E(x,·)) 为 Σ₁ 可测,且有 μ₁(l(x))=μ₁ × μ₂(E)

证明:若

E ∈ 𝓡 ={A₁ × A₂,A₁ ∈ Σ₁,A₂ ∈ Σ₂},显然成立。

𝓢 ={E:∀x,E(x,·) ∈ Σ₂,l(x) Σ₁,μ₁(E(x,·))=μ₁ × μ₂(E)}

,则不难知道 𝓢 为 λ 系,又 𝓡 ⊆ 𝓢,故 Σ₁ × Σ₂ ⊆ 𝓢 。◾

引理2. 若μ₁,μ₂ 为 σ 有限,∀E ∈ Σ₁ × Σ₂,x ∈ X ,E(x,·)={y∈Y:(x,y) ∈ E} 称为 E 在 x 处的截面集,则 ∀x ∈ X,E(x,·) ∈ Σ₂,l(x)=μ₂(E(x,·)) 为 Σ₁ 可测,且有 μ₁(l(x))=μ₁ × μ₂(E)

证明:取

Aₙ ↑ X,Bₙ ↑ Y,μ₁ (Aₙ)<∞,μ₂(Bₙ)<∞,由引理1,考虑 (X × Y,Σ₁ × Σ₂,μ₁ × μ₂) 在 Aₙ × B₂ 上的限制,可知 E∩(Aₙ × Bₙ) 满足条件,从而 ᴱ ⁼ ˡⁱⁿ E∩(Aₙ × Bₙ)满足条件。◾ ₙ

由引理2,进而若f 为简单可测函数,则有1) ∀x,f(x,·) Σ₂ 可测,2) lf(x):x → ∫ʏ f(x,·) dμ₂ 为 Σ₁ 可测,3) ∫x lf(x)dμ₁=∫x×ʏ fdμ₁ × μ₂ 。

进而若f 为非负可测函数,可写

i – 1

f=lim hₙ,hₙ=Σⁿ²ⁿᵢ₌₁ ── .

2ⁿ

1{f∈[(i – 1)/2ⁿ,i/2ⁿ)}+n · 1{f≥n}

,从而也满足1),2),3),从而得到定理1:

定理1. 对于任何非负可测函数f , ∀x ∈ X,f(x,·) 为 Σ₂ 可测, lf(x):x → ∫ʏ f(x,·)dμ₂ 为 Σ₁ 可测,且有 ∫x ∫ʏ f(x,y)μ₂(dx)μ₁(dy)=∫x×ʏ fdμ₁ × μ₂ 。

定理2(Fubini定理). 对于任意f ∈ L¹ (X × Y) ,则1) ∀x ∈ X,f(x,·) 是 Σ₂ 可测的,2)对于 α,e. x, f(x,·) ∈ L¹(Y,σ₂,μ₂) , 可积时,令 lf(x)=∫ʏ f(x,·)dμ₂ ,不可积时,令 lf(x)=0,则 lf(x) Σ₁ 可测 ,3) lf(x) ∈ L¹(X,Σ₁,μ₁),∫x lf(x)dμ₁=∫x×ʏ fdμ₁ × μ₂ 。若先对 X 再对 Y 积分,类似的结论成立。

证明:f=f⁺ – f⁻ ,由定理1,可知 lf⁺(x),lf⁻(x) ∈ L¹,从而a.e. 有限,在a.e.意义下有lf(x)=lf⁺(x) – lf⁻ (x),进而可得定理2。◾

推论1. 取X=Y={1,2,· · ·},μ₁({i})=μ₂({i})=1,令 αₘ,ₙ=f(m,n),由Fubini定理可得 Σₘ,ₙ |αₘ,ₙ|=ΣₙΣₘ |αₘ,ₙ|=ΣₘΣₙ |αₘ,ₙ|,若前一式< ∞,则有 Σₘ,ₙαₘ,ₙ=ΣₙΣₘαₘ,ₙ=ΣₘΣₙαₙ,ₘ

推论2(一般可积函数的分部积分公式).f,g ∈ L¹([α,b]) ,令 F(t)=∫ᵗα fdm+F(α),G(t)=∫ᵗα ghm+G(α),则有 ∫ᵇα F · gdm=F · G|ᵇα – ∫ᵇα f · Gdm

证明:

∫ᵇα F(t)g(t)dt=∫ᵇα (∫ᵗα f(x)dx+F(α)) · g(t)dt

=∫ᵇα ∫ᵇα f(x)l{x≤t}g(t)+F(α)g(t)dxdt=∫ᵇα ∫ᵇα f(x)1{x≤t}g(t)dxdt+F(α)G|ᵇα

=∫ᵇα f(x)(∫ᵇα 1{x≤t}g(t)dt)dx+F(α)G|ᵇα=∫ᵇα f(x)(G(b) – G(x))dx+F(α)G|ᵇα

= – ∫ᵇα f(x)G(x)dx+G(b)F|ᵇα+F(α)G|ᵇα=FG |ᵇα – ∫ᵇα fGdm

即得一般可积函数的分部积分公式。◾

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

你就是我的救赎mr 连载中
你就是我的救赎mr
陌然mrr
有一位叫做梦佳的神明,因神明有一项不能拥有感情的规则,所以从小便欠缺感情,她自己也知道自己和别的神明不一样,她更想要拥有感情的生活,没有感情......
2.8万字8个月前
恋爱的九九八十一面 连载中
恋爱的九九八十一面
春敬惊
有虐男师徒恋正常恋爱与笔下角色相恋...你想看的脑洞它都有
2.1万字8个月前
三铜钱 连载中
三铜钱
阿月不想吃肉
1314与1058的相遇像是被安排好的,这发生的一切好像都像是安排好的,这到底是为什么?是谁做的这一切
0.2万字8个月前
三世情缘之重生后我竟成了仇敌首徒 连载中
三世情缘之重生后我竟成了仇敌首徒
洛安歌
一万年前,他们是伴侣却不得善终。第二世他们没认出彼此站在对立面。今生为师徒。在仇恨与爱慕之情徘徊,难以抉择。
2.8万字7个月前
仙途莓影之蛇莓传奇 连载中
仙途莓影之蛇莓传奇
屑榵榵
蛇莓的冒险计划,
67.5万字7个月前
原来你就是我 连载中
原来你就是我
鱼仔璃
讲述的是女主和她的闺蜜们一起建立了五之团,在普通的校园生活中也会发生一些让人想不到的一些灵异现象以及灵异事件,这个时候五之团也就派上场………......
0.3万字6个月前