数学联邦政治世界观
超小超大

Galois 群的上同调群

B¹(G,A)={ξ:G → A│∃α ∈ A s.t. σξ=α – ασ (∀σ ∈ G)},

Z¹(G,A)={ξ:G → A│(σ₁σ₂)ξ=(σξ₁)σ₂+σξ₂(∀σ₁,σ₂ ∈ G)}.

目录

群的上同调

一维上同调群的表达式

Galois 群的一维上同调群

本文我们介绍群的上同调群的基本概念,并证明域的有限 Galois 扩张的 Galois 群的取值在域中的一维上同调群是平凡的。

参考文献:北京大学出版社《抽象代数Ⅱ》,徐明曜、赵春来编著。

群的上同调

首先我们介绍群的上同调。设G 是群,令 Gⁱ⁺¹=G × G × · · · × G(i+1 个 G),并令 Pᵢ=ℤ[Gⁱ⁺¹]。定义 G 在 Gⁱ⁺¹ 上的作用为 (σ₀,. . .,σᵢ)σ=(σ₀σ,. . .,σᵢσ),其中 σ∈G,(σ₀,. . .,σᵢ) ∈ Gⁱ⁺¹。这个作用的 ℤ-线性扩张给出群环 ℤ[G] 在 Pᵢ 上的作用,使得 Pᵢ 成为自由 ℤ[G] 模,其基可取为

{(σ₀,σ₁,. . .,σᵢ₋₁,1)│(σ₀,. . .,σᵢ₋₁)∈Gⁱ}.

对于任一 i ≥ 0,定义映射

dᵢ:Pᵢ₊₁ → Pᵢ,

(σ₀,. . .,σᵢ) ↦∑(–1)ʲ (σ₀,. . .,σⱼ₋₁,σⱼ₊₁,. . .,σᵢ). ⱼ₌₀

易见dᵢ 是 ℤ[G] 模同态。考虑序列

d₂ d₁ d₀ ε

· · · → P₂ → P₁ → P₀ → ℤ → 0, (1)

其中 ε 的定义为

ε:P₀(=ℤ[G]) → ℤ,

ₘ ₘ

∑ αⱼσⱼ ↦ ∑ αⱼ (αⱼ ∈ ℤ,σⱼ ∈ G).

ⱼ₌₁ ⱼ₌₁

如果将 ℤ 视为平凡 ℤ[G] 模(即 G 中任一元素在 ℤ 上的作用都是 ℤ 上的恒同映射),则 ε 是 ℤ[G] 模同态。于是 (1) 是 ℤ[G] 模序列。不难验证序列 (1) 是正合的。称序列 (1) 为 ℤ 作为平凡 ℤ[G] 模的自由化解。

现在设 A 为任一 ℤ[G] 模。将函子 Homℤ[G](·,A)应用于序列 (1)(除去最后一项),我们得到序列

d*₂ d*₁ d*₀

· · · ← Hom(P₂,A) ← Hom(P₁,A) ← Hom(P₀,A). (2)

此序列一般而言不再是正合的。但是,不难看出对于任一 i=0,1,. . .,有 d*ᵢd*ᵢ₊₁=0,即 im d*ᵢ ⊆ ker d*ᵢ₊₁ 。我们称序列 (2) 为一个上链复形。

定义 1. 对于 i>0,ker d*ᵢ 称为 G 的取值在 A 中的 i 维上闭链,记为 Zⁱ(G,A);im d*ᵢ₋₁ 称为 G 的取值在 A 中的 i 维上边缘,记为 Bⁱ(G,A);商群 Zⁱ(G,A)/Bⁱ(G,A) 称为 G 的取值在 A 中的 i 维上同调群,记为 Hⁱ(G,A)。G 的取值在 A 中的 0 维上同调群 H⁰(G,A) 定义为 ker d*₀ 。

一维上同调群的表达式

为了将上同调群清楚地表达出来,我们将Pᵢ 换一个写法。作为自由 ℤ[G] 模,Pᵢ 的基取为

{(σ₁σ₂ · · · σ₁,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1)│σ₁,. . .,σᵢ ∈ G}.

以下将 (σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1) 记为 [σ₁,. . .,σᵢ](P₀ 的基记为 [ ])。在此记号下,自由化解序列中的模同态 dᵢ₋₁ 在基上的作用为

[σ₁,σ₂,. . .,σᵢ]ᵈⁱ⁻¹

=(σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ,1)ᵈⁱ⁻¹

=(σ₂ · · · σᵢ,σᵢ₋₁σᵢ,σᵢ,1)

+∑(–1)ʲ⁻¹ (σ₁σ₂ · · · σᵢ,. . .,σⱼ₋₁ · · · σᵢ,σⱼ₊₁ · · · σᵢ,. . .,σᵢ,1)

ⱼ₌₂

+(–1)ⁱ(σ₁σ₂ · · · σᵢ,σ₂ · · · σᵢ,. . .,σᵢ₋₁σᵢ,σᵢ)

=[σ₂,. . .,σᵢ]+∑(–1)ʲ⁻¹ [σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ] ⱼ₌₂

+(–1)ⁱ[σ₁,. . .,σᵢ₋₁]σᵢ.

于是,对于任一 φᵢ₋₁ ∈ Hom ℤ[G],有

[σ₁,σ₂,. . .,σᵢ] (d*ᵢ₋₁ φᵢ₋₁)

=([σ₁,σ₂,. . .,σᵢ]ᵈⁱ⁻¹)φᵢ₋₁

=[σ₂,. . .,σᵢ]φᵢ₋₁+∑(–1)ʲ⁻¹[σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ]φᵢ₋₁ ⱼ₌₂

+(–1)ⁱ([σ₁,. . .,σᵢ₋₁]σᵢ)φᵢ₋₁

=[σ₂,. . .,σᵢ]φᵢ₋₁+∑(–1)ʲ⁻¹[σ₁,. . .,σⱼ₋₁σⱼ,. . .,σᵢ]φᵢ₋₁ ⱼ₌₂

+(–1)ⁱ([σ₁,. . .,σᵢ₋₁]φᵢ₋₁)σᵢ.

具体写出 d*₀ 和 d*₁ 的表达式。对于任一 ξ ∈ Homℤ[G] (P₀,A) 以及 [σ] ∈ P₁,有

[σ](ξᵈ*¹)=[ ]ξ – ([ ]ξ)σ.

对于任一 ξ ∈ Homℤ[G] (P₁,A) 以及 [σ₁,σ₂] ∈ P₂,类似地有

[σ₁,σ₂](ξᵈ*¹)=[σ₂]ξ – [σ₁σ₂]ξ+([σ₁]ξ)σ₂.

由此可知

B¹(G,A)=lim d*₀

={ξ:G → A│∃α ∈ A s.t σξ=α – ασ(∀σ ∈ G)}, (3)

Z¹(G,A)=ker d*₁

={ξ:G → A│(σ₁σ₂)ξ=(σξ₁)σ₂+σξ₂(∀σ₁,σ₂∈G)}. (4)

这样,我们得到了群 G 的一维上同调群的表达式

H¹(G,A)=Z¹(G,A)/B¹(G,A),

其中 Z¹(G,A) 和 B¹(G,A) 如 (3) 和 (4) 式所示。

Galois 群的一维上同调群

先证明一个引理。

引理 1. 设 K/F 是有限 Galois 扩张,则 Galois 群 Gal(K/F) 的元素 σ₁,. . .,σₙ 是 K-线性无关的,即:如果 α₁,. . .,αₙ∈K 使得

α₁xσ¹+· · ·+αₙxσⁿ=0 (∀x∈K), (5)

则 α₁=· · ·=αₙ=0。

证明. 假若存在不全为零的 α₁,. . .,αₙ∈K 使得 (5) 式成立,设 m 是使得 (5) 式成立的最小项数,即存在 K 中的不全为零的元素 b₁,. . .,bₘ 使得

b₁xσᵢ₁+· · ·+bₘxσᵢₘ=0 (∀x∈K), (6)

并且 c₁xσⱼᵢ+· · ·+cₘ₋₁xσⱼₘ₋₁=0 (∀x∈K) 蕴含着 c₁=· · ·=cₘ₋₁=0。由于 σᵢ₁ ≠ σᵢ₂,所以存在 y∈K 使得 yσᵢ₁ ≠ yσᵢ₂。将 xy 代入 (6) 式,得

b₁(xy)σᵢ₁+b₂(xy)σᵢ₂+· · ·+bₘ(xy)σᵢₘ=0 (∀x∈K).

以 yσᵢ₁ 乘 (6) 式,得

b₁(xy)σᵢ₁+b₂ yσᵢ₁ xσᵢ₂+· · ·+bₘ yσᵢ₁ xσᵢₘ=0 (∀x∈K).

以上两式相减,得

b₂(yσᵢ₁ – yσᵢ₂)xσᵢ₂+· · ·+bₘ(yσᵢ₁ – yσᵢₘ)xσᵢₘ=0 (∀x∈K).

其中 xσᵢ₂ 的系数 b₂(yσᵢ₁ – yσᵢ₂) ≠ 0,这矛盾于 m 的最小性。 ▢

设K/F 是 Galois 扩张,则 K×=K\{0}(作为乘法群)在 Gal(K/F) 自然的作用下(即对于 σ ∈ Gal(K/F) 和 x ∈ K×,定义 σ 在 x 上的作用 xσ 为 xσ)是 ℤ[Gal(K/F)] 模。于是可以考虑 Gal(K/F) 的取值在 K× 中的上同调群。

定理 1. 设 K/F 是有限 Galois 扩张,则 H¹(Gal(K/F),K×)={1}。

证明. 记 G=Gal(K/F)。只要证明 Z¹(G,K×) ⊆ B¹(G,K×)。设 ξ ∈ Z¹(G,K×),则由 (4) 式,

(στ)ξ=(σξ)τ · τξ (∀σ,τ ∈ G). (7)

为证明 ξ ∈ B¹(G,K),由 (3) 式,只要证存在 α∈K× 使得 τξ=α · (ατ)⁻¹ (∀τ ∈ G)成立。由引理 1,存在 x∈K 使得 b=∑σξxσ ≠ 0。

σ∈G

对于任一 τ∈G,由 (7) 式,有

bτ=∑(σξ)τ xστ=∑((στ)ξ(τξ)⁻¹)xστ=b · (τξ)⁻¹. σ∈G σ∈G

取 α=b 即可。 ▢

最后我们指出:K 作为加法群当然也是 ℤ[Gal(K/F)] 模,因此可考虑 ℤ[Gal(K/F)] 的取值在加法群 K 中的上同调群 Hⁱ(Gal(K/F),K) (i ≥ 1)。结论是:这些上同调群都是平凡的。证明此结论的一条途径是应用正规基定理,即:如果 K/F 是有限 Galois 扩张,则存在 x∈K 使得 {xσ│σ ∈ Gal(K/F)} 构成 K(作为 F-线性空间)的一组基。但是,一般而言, Hⁱ(Gal(K/F),K×) 当 i>1 时不一定是平凡的。H²(Gal(K/F),K×) 称为 K/F 的 Brauer 群。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.2万字2个月前
梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字2个月前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
2.8万字1个月前
十二星座之星空璀璨 连载中
十二星座之星空璀璨
陌cc
当你仰望天空,星空璀璨,繁星闪耀,如此美丽的背后究竟是怎样的凶险和困境,才有如此漂亮的星空呢?星空之下隐藏的秘密又是什么呢?|星空如此璀璨,......
6.3万字2个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字1个月前
书外的你我是天作之合 连载中
书外的你我是天作之合
璟秋竹
明月几时有?把酒问青天。你是暖阳,是我生命里不可缺失的光,你是早晨的太阳,明亮又耀眼。所以,谢谢你永远选择我。苏淮雪,不论书里书外。(双女主......
0.6万字1个月前