数学联邦政治世界观
超小超大

Mycielski定理

定理(Mycielski):设Ⅹ 为一波兰空间, R ⊆ Ⅹ × X 是其上的一个meager的等价关系,则存在一个闭的perfect子集 C ⊆ X ,使得 C 中元素两两 R-不等价。

Proof:假设Dₙ ⊆ Ⅹ × X 为一列稠密开集,使得 R∩∩Dₙ=∅ 。

下面我们构造一个从 2ω 到非空开集的映射 σ ↦ Vσ 使得:

───

1. 对每个 σ ∈ α<ω,Vσ⁀i ⊆ Vσ,其中 i ∈ {0,1} 。

2. 对每个 σ ∈ 2<ω , diam(Vσ) ≤ 2⁻|σ|。

3. 对每个 n ,以及 σ,τ ∈ 2ⁿ⁺¹ ,如果 σ ≠ τ ,则 Vσ × Vτ ⊆ ∩ Dₙ 。

m≤n

令V〈·〉=X 。现在假设对每个 σ ∈ 2ⁿ ,Vσ 都已经定义好了,现在取 V' ⊂ Vσ 使得

────

V' ⊆ Vσ ,且 diam(V') ≤ 2⁻ⁿ⁻¹ ,考察 V' × V' ∩∩ Dₙ

m≤n

,这是一个非空开集,取 Vσ⁀0,Vσ⁀1 使得 ∅ ≠ Vσ⁀0 × Vσ⁀1 ⊆ V' × V' ∩ ∩ Dₙ 。

m≤n

如果 σ,τ ∈ 2ⁿ 不相容,我们再对 Vσ⁀i,Vτ⁀i 做类似的操作,保证 Vσ⁀i × Vτ⁀i ⊆ Dₙ ,其中 i ∈ {0,1} 。

现在定义映射f:2ω → X 使得

x↦∩Vₓ⨡ₙ

n∈ω 则这个映射定义良好,因为 ∩ₙ Vₓ⨡ₙ

───

=∩ₙ Vₓ⨡ₙ 为单点集。而且这个映射是单射,因为如果 x ≠ y ∈ 2ω ,则对所有 n , (x,y) ∉ ∪ₙ ,从而 (x,y) ∉ R ,所以 x ≠ y 。 f 显然是连续的,因为 f⁻¹[Nₛ]={x ∈ 2ω:∃n Vₓ⨡ₙ ⊆ Nₛ} 从而像集 f[2ω] ⊆ X 就是一个perfect的闭集。闭性因为 2ω 的紧致性,无孤立点因为单射。其元素两两 R-不等价刚刚已经证明过了。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

外星少女在民国 连载中
外星少女在民国
忆轩孤梦
[这一本我更新的非常慢,原因是在于想完结其他本,然后再更新这个。先看其他的哦]【一本男女都可以看的小说】她是银河深处的紫幽星少女,身怀魔力。......
4.5万字1年前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
2.8万字12个月前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字12个月前
十二星座:方寸死斗 连载中
十二星座:方寸死斗
简思达江斯特
〖星座文内含cp向注意避雷〗因为杀死所爱之人而被困在噩梦里无法解脱这一次,饱受折磨的少年做了变成女孩子的梦(有刀哈,心理承受能力较差的老婆酌......
1.6万字12个月前
地缚少年:第八大灵异现象 连载中
地缚少年:第八大灵异现象
悦音幻
这里是ALL女主文,主花子君和原创女主,想看的就进来吧,比较甜,花宁粉勿进。
1.6万字9个月前
我靠强迫症养废神兽后成了团宠 连载中
我靠强迫症养废神兽后成了团宠
香奈儿_8265353654201530
3.8万字4个月前