数学联邦政治世界观
超小超大

集合论公理解决【罗素悖论】二

这是 ZFC 版本下的 separation:

如果A是一个集合,并且ф(x)是一个描述,那么我们可以把那些属于A并且满足描述ф的个体搜集在一起构成一个集合。

这是粗鄙的 separation:

如果ф(x)是一个描述,那么我们可以把那些满足描述ф的个体搜集在一起构成一个集合。

区别在于,ZFC 下面的 separation 不是凭空产生的,而依赖于原有的集合。

在粗鄙的情况下,会产生罗素悖论。令ф(x):=x ∉ x就可以得到{x:x ∉ x},然后问这个集合是否属于自身,便得到悖论。但是在 ZFC 中,即便没有 foundation, 也不会出现这样的问题,因为根本就没有{x:x ∉ x}这样的写法,只有{x ∈ A:x ∉ x}这样的写法,而就算是没有 foundation,我们光从{x ∈ A:x ∉ x}也得不到矛盾。将{x ∈ A:x ∉ x}这个集合记作 B,只有在B ∈ A并且B ∉ B的情况下才会有问题。那么我们只需要选择B ∉ B并且B ∉ A就能避免矛盾了。当然,另一条线依旧是不能选择的:假设B ∈ B,那么我们就得到B ∈ A并且B ∉ B,而这一边依旧是一个矛盾。但是没关系,另一边已经不再封闭了。

于是,在 ZFC 里面,罗素悖论的形式帮助我们看清了这一点:对于任何一个集合 A,总存在一个集合 B,使得 B 不在 A 里面。换而言之,不存在所有集合的集合。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

每个世界都在发生不同的事情 连载中
每个世界都在发生不同的事情
风中凌乱的
宝宝们,欢迎观看,希望宝子们喜欢,大家一起交流,可以告诉我,你想看的类型,我来写。
5.5万字1年前
梦:我的一百零一个梦 连载中
梦:我的一百零一个梦
聪明的呆子
他们说,梦里梦到的人,现实就见不到了如果我说我不信呢,我一定会见到你的
0.6万字12个月前
她们真的是救世主嘛? 连载中
她们真的是救世主嘛?
汽see
在这个鬼怪与人类的世界里,六个女孩通过解开一个又一个的灵异事件,去探寻星清学院的真相,她们会发生什么样的事呢…不过,她们真的是救世主吗?无c......
13.5万字10个月前
人类和人鱼之间的恋爱 连载中
人类和人鱼之间的恋爱
璀璨星辰_804006620649190
3.1万字8个月前
樱花谣 连载中
樱花谣
此夜风书行
春末的樱花雨里,血色琴弦拨动了尘封八十年的时空密码。音乐系少女沈若棠从未想过,外婆临终前划在掌心的五线谱,会让她在樱花树下遇见虎口渗血的白衣......
4.7万字7个月前
狼王梦——遗骸魂 连载中
狼王梦——遗骸魂
孤影共长存
遗愿未了,怎能轻言放弃?
0.3万字6个月前