数学联邦政治世界观
超小超大

集合论公理解决【罗素悖论】二

这是 ZFC 版本下的 separation:

如果A是一个集合,并且ф(x)是一个描述,那么我们可以把那些属于A并且满足描述ф的个体搜集在一起构成一个集合。

这是粗鄙的 separation:

如果ф(x)是一个描述,那么我们可以把那些满足描述ф的个体搜集在一起构成一个集合。

区别在于,ZFC 下面的 separation 不是凭空产生的,而依赖于原有的集合。

在粗鄙的情况下,会产生罗素悖论。令ф(x):=x ∉ x就可以得到{x:x ∉ x},然后问这个集合是否属于自身,便得到悖论。但是在 ZFC 中,即便没有 foundation, 也不会出现这样的问题,因为根本就没有{x:x ∉ x}这样的写法,只有{x ∈ A:x ∉ x}这样的写法,而就算是没有 foundation,我们光从{x ∈ A:x ∉ x}也得不到矛盾。将{x ∈ A:x ∉ x}这个集合记作 B,只有在B ∈ A并且B ∉ B的情况下才会有问题。那么我们只需要选择B ∉ B并且B ∉ A就能避免矛盾了。当然,另一条线依旧是不能选择的:假设B ∈ B,那么我们就得到B ∈ A并且B ∉ B,而这一边依旧是一个矛盾。但是没关系,另一边已经不再封闭了。

于是,在 ZFC 里面,罗素悖论的形式帮助我们看清了这一点:对于任何一个集合 A,总存在一个集合 B,使得 B 不在 A 里面。换而言之,不存在所有集合的集合。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

十铭:终致歉——刹那 连载中
十铭:终致歉——刹那
刹那乂
一位少女死后进入游戏开始找回记忆的热血故事“如果我的死,能换到重头再来……”“好久不见”“嗯,好久不见”本书为个人oc世界!原创!禁止抄袭角......
0.4万字1年前
原创:失忆女主竟是团宠 连载中
原创:失忆女主竟是团宠
喑滟
“小念!等我!”“小念!”“小念。”“小念,让我们来保护你!”原创女主,非小说运载。小学生文笔,不喜勿喷。《缘与空》粉,请别在意封面(因为作......
1.6万字9个月前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有十位主角,五位男生,五位女生。不要把其他人当配角看,重复一遍“十位主角”。
3.2万字9个月前
倚靠在时光的背后爱着你 连载中
倚靠在时光的背后爱着你
时光荏苒,初心依旧
王进不知不觉中迷恋上高帅,岁月匆匆,她究竟能不能和高帅真正走在一起呢?……
28.1万字9个月前
星缘栀子 连载中
星缘栀子
是洛小允吖
初恩映月栀黎凝香
1.6万字8个月前
龙和吸血鬼 连载中
龙和吸血鬼
红竿
龙女,她不知族人还剩几个,也不知自己的长生有何意义。吸血鬼,猎杀和爱情带给他同等的神经震颤。他不知道自己是想杀了她,还是爱上了她。两个都不属......
20.7万字7个月前