数学联邦政治世界观
超小超大

复数

复数域 ℂ 是唯一一个代数封闭的局部域。

(一维)局部域(loacl field)按特征和Archimedes性可以分为三类:

• 特征为 0 的Archimedes局部域:实数域 ℝ 、复数域 ℂ

• 特征为 0 的非Archimedes局部域: p-adic数域 ℚₚ 的有限扩张

• 特征非零的非Archimedes局部域:有限域 𝔽q 上的形式Laurent级数域 𝔽q((T))

显然其中代数封闭的只有复数域ℂ 。因此,只从代数和拓扑上讲,复数域具有三个非常好的性质:代数封闭、度量完备、局部紧致。

复数域的代数封闭性自然不必多说,这意味着每个次数不小于一的多项式都至少有一个零点。度量完备性意味着其内的每个Cauchy序列都收敛,这为分析学的开展奠定了基础。而局部紧致性作为拓扑空间的有限性条件,研究的是拓扑空间的局部性质和整体性质的联系。例如,对于非紧致的Hausdorff局部紧致空间,可以单点紧致化,复数域ℂ 的单点紧致化就是Riemann球面 ˆℂ ,同时也是复射影直线 ℂℙ¹ ,这是复分析和复几何中的重要研究对象。

更重要的一点,代数封闭性以及度量完备性共同暗示了:在某种意义上讲,复数域已经是“最大”的数域——因为你没办法再通过代数方法和拓扑方法进一步扩张。然而,度量完备的代数闭域不仅仅有复数域ℂ ,还有 p-adic复数域 ℂₚ 、 ℂₚ 的球完备化 Ωₚ 和tilting ℂᵇₚ 。但更妙的一点在于, ℂₚ 和 Ωₚ 并不比 ℂ 更“大”,事实上,根据Steinitz定理,这三个作为域是同构的,但是 ℂₚ 和 Ωₚ 在拓扑性质上并不如 ℂ ,这两者都不是局部紧致的,同样 ℂᵇₚ 也不是,而且 ℂᵇₚ 的特征是 p ,非零。

从泛函分析角度看,ℂ 甚至还是一个球完备域,这点是 ℂₚ 完全比不了的。而几何上,我们有复几何与复代数几何的对偶——GAGA,这些都是复数域独有的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

想要竹马甜甜的~ 连载中
想要竹马甜甜的~
九-儿
明明人家的时而霸道,时而温顺,可盐可甜,为什么我的竹马不一样?!在线等!急啊!!!
1.7万字2个月前
清冷钓系美人每天都在修罗场 连载中
清冷钓系美人每天都在修罗场
栖行止
谢笺屿长发窄腰,拥有一双纯净澈透的冰蓝色凤眸,浑身散发的清冷圣洁气息,让他稳坐s市首校磬华大学高岭之花的宝座美人清净自持,端方矜贵,走到哪里......
86.9万字2个月前
十二星座:与你共存 连载中
十二星座:与你共存
柒染qire
地方叫尔晴洛漓簇使,那里的人培养十二星座,可有一天,一个名叫泫雅的,带领了一群黑衣人闯入了尔晴洛漓簇。她们拿走了族中最珍贵的伊克斯宝石,它是......
2.5万字2个月前
十二星座:方寸死斗 连载中
十二星座:方寸死斗
简思达江斯特
〖星座文内含cp向注意避雷〗因为杀死所爱之人而被困在噩梦里无法解脱这一次,饱受折磨的少年做了变成女孩子的梦(有刀哈,心理承受能力较差的老婆酌......
1.6万字2个月前
重生?迪恩你个老六! 连载中
重生?迪恩你个老六!
罪恶中介阎君
机设,男迪,非拟人动画迪预警!迪恩重生后开始“摆烂”,剧情又会按照怎样的方向发展呢?作者雷迪息!!!
3.0万字2个月前
梦境大世界 连载中
梦境大世界
梦颜宁
我自己做的一个梦
0.6万字1个月前