数学联邦政治世界观
超小超大

代数

比例的性质实质是等式基本性质的体现。

等式基本性质是,1给等式两边同加一个数或同减一个数,等式仍成立;2给等式两边同乘一个不为零的数或同除一个不为零的数,等式仍然成立。

设a:b=c:d,或a/b=c/d,那么

①ad=cd(外项积等于内项积),

②b:a=d:c(反比定理),

③a:c=b:d,d:b=c:a(更比定理),

④(a+b)/b=(c+d)/d(合比定理),

⑤(a-b)/b=(c-d)/d(分比定理),

⑥(a+b)/(a-b)=(c+d)/(c-d)(合分比定理),

⑦若a/b=c/d=e/f,那么

(a+c+e)/(b+d+f)=a/b.

例1,若a+b+c=18,a/2=b/3=c/4.求a,b,c的值。

解:设a/2=b/3=c/4=k,则a=2k,b=3k,c=4k,这样a+b+c=2K+3k+4k=18,得k=2。于是a=4,b=6,=8。

倒2,已知梯形ABCD,AB∥CD,AB=a,CD=b,AB与CD交于M,求S△ABM:S△CDM:S△ADM:S△BCM。

解:设S△ABM=S1,S△CDM=S2,S△ADM=S3,S△BCM=S4。

因为AB∥CD,所以△ABM~△CDM,由相似三角形面积之比等于相似比的平方。于是,

S1/S2=(a/b)^2。

又设a/b=AM/CM=BM/DM=k(相似比),则

S1/S2=k^2,得S1=K^2S2,

S3/S2=AM/CM=k,得S3=kS2,

S4/S2=AM/CM=k,得S4=KS2。所以,

S1:S2:S3:S4=K^2S2:S2:KS2:KS2

=K^2:1:K:K=b^2K^2:b^2:Kb^2:Kb^2

=a^2:b^2:ab:ab。

例2是我们熟悉的梯形,对角线分梯形所得的四个部分,两腰为边的两个三角形面积相等,有人称这是蝴蝶定理,上下底为边两三角形面积之比是上下底之比的平方。四个三角形面积之比是a^2:b^2:ab:ab,这一点,遇到有关问题非常有用。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

无声陪伴 连载中
无声陪伴
184***446_9133823268
十七年的陪伴最后却无能为力
0.1万字9个月前
嗜血暗夜 连载中
嗜血暗夜
亦依然
卡米拉一直认为自己是一个没有感情的怪物,可是最后他还是心软了,收养了个半人半吸血鬼的小可怜作为吸血鬼,卡米拉惊奇的发现自己新收养的小可怜竟然......
0.7万字8个月前
巫女日記 连载中
巫女日記
Sumphote
架空世界,主角安以琪·苏·图兰,一半萨摩一半库兰,讲述其上大学后发生的一系列事情,不断成长,渐渐明白自己意欲何为,想要坚持父母那个梦想——建......
9.0万字8个月前
花痴女配就不能是万人迷了吗 连载中
花痴女配就不能是万人迷了吗
巫筱
【渣女+雄竟修罗场+舔狗文学+多男主买股文】温晴绑定了一个名为舔狗系统的不明生物体。在系统的解释下才明白自己生活在一本名为《师尊别走》的话本......
2.9万字7个月前
1000个民间故事 连载中
1000个民间故事
无敌蛙王
每一个故事。或奇幻、或温情、或警醒。那些被岁月尘封的传说。带着生活的烟火与奇思。跨越时空。讲述人间万象。
18.6万字7个月前
修真界的第一剑修爱上了一颗仙草化形的娇娇男 连载中
修真界的第一剑修爱上了一颗仙草化形的娇娇男
。_751274786529310802
娇娇男爱上了修真界败类
11.6万字3个月前