数学联邦政治世界观
超小超大

代数

比例的性质实质是等式基本性质的体现。

等式基本性质是,1给等式两边同加一个数或同减一个数,等式仍成立;2给等式两边同乘一个不为零的数或同除一个不为零的数,等式仍然成立。

设a:b=c:d,或a/b=c/d,那么

①ad=cd(外项积等于内项积),

②b:a=d:c(反比定理),

③a:c=b:d,d:b=c:a(更比定理),

④(a+b)/b=(c+d)/d(合比定理),

⑤(a-b)/b=(c-d)/d(分比定理),

⑥(a+b)/(a-b)=(c+d)/(c-d)(合分比定理),

⑦若a/b=c/d=e/f,那么

(a+c+e)/(b+d+f)=a/b.

例1,若a+b+c=18,a/2=b/3=c/4.求a,b,c的值。

解:设a/2=b/3=c/4=k,则a=2k,b=3k,c=4k,这样a+b+c=2K+3k+4k=18,得k=2。于是a=4,b=6,=8。

倒2,已知梯形ABCD,AB∥CD,AB=a,CD=b,AB与CD交于M,求S△ABM:S△CDM:S△ADM:S△BCM。

解:设S△ABM=S1,S△CDM=S2,S△ADM=S3,S△BCM=S4。

因为AB∥CD,所以△ABM~△CDM,由相似三角形面积之比等于相似比的平方。于是,

S1/S2=(a/b)^2。

又设a/b=AM/CM=BM/DM=k(相似比),则

S1/S2=k^2,得S1=K^2S2,

S3/S2=AM/CM=k,得S3=kS2,

S4/S2=AM/CM=k,得S4=KS2。所以,

S1:S2:S3:S4=K^2S2:S2:KS2:KS2

=K^2:1:K:K=b^2K^2:b^2:Kb^2:Kb^2

=a^2:b^2:ab:ab。

例2是我们熟悉的梯形,对角线分梯形所得的四个部分,两腰为边的两个三角形面积相等,有人称这是蝴蝶定理,上下底为边两三角形面积之比是上下底之比的平方。四个三角形面积之比是a^2:b^2:ab:ab,这一点,遇到有关问题非常有用。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

忆月度年 连载中
忆月度年
旅行的薰衣草
给亲友世界观里设计的oc,完全是自娱自乐向的因此质量和更新全部随缘。
0.3万字2个月前
阿瑞亚大陆 连载中
阿瑞亚大陆
无名柳
(注:主角是短发的女性)人类世界以外的另一个空间,大陆的名字是直接引用了创世神的姓名。这片空间中诸多生灵相处和睦,无比美好。在那个扭曲微妙的......
22.1万字2个月前
幻想:不公定律—无罪世界 连载中
幻想:不公定律—无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.3万字2个月前
青山不知语(红线) 连载中
青山不知语(红线)
鱼头煲鸡汤
原以为自己是没有父亲的,结果等自己母亲死了才知道母亲谈了一个异世界的人,被接回去的时候才知道,自己还有一个姐姐,但这个姐姐很不喜欢她。可以说......
3.5万字2个月前
她们真的是救世主嘛? 连载中
她们真的是救世主嘛?
汽see
在这个鬼怪与人类的世界里,六个女孩通过解开一个又一个的灵异事件,去探寻星清学院的真相,她们会发生什么样的事呢…不过,她们真的是救世主吗?无c......
13.5万字6天前
魔法之语 连载中
魔法之语
yes莫
千年前的玛吉拉大陆,是一片生灵涂炭的世界。精灵女孩柒月意外被老师伊西斯所救,从此开始她漫长的一生……
2.9万字6天前