数学联邦政治世界观
超小超大

三角函数

构造一个不是三角函数的f(x)和g(x)。简化一下问题,假设f(x)=f(0)=0,可得g(x+y)=g(x)g(y)。再设k(x)=ln(g(x)),有k(x+y)=k(x)+k(y)。如果能找到了一个k(x)的不连续解,g(x)=e^k(x)也不可能是连续的,从而不可能是三角函数。

设R是Q上的线性空间,因为739085^(1/2)是无理数,所以S={1,739085^(1/2)}在Q上是线性无关的。现在我们定义一个集合T={X|S⊆X,X中的元素在Q上线性无关},然后对T中的元素,用集合之间的⊆关系定义<关系,就给T中的元素建立了一个偏序关系。比如对M={1,739085^(1/2),√2}和N={1,739085^(1/2),π},我们有M,N∈T,其中S<M,S<N,但M和N之间互相没有包含关系,所以M和N之间不能比较大小,于是T不是一个全序集。但利用选择公理,我们可以在T中找到一个极大的全序子集。

我们给出一个单调递增的序列S_n(n∈N):

S₀=S

S_(n+1)=S_n∪{739085^(1/(n+2))}

然后可以取并集得到:

S_ω=∪S_n={1,739085^(1/2),739085^(1/3),......}

可以看出来,对每个n,都有S_ω>S_n。

然后在S_ω中再加一个元素得到S_(ω+1),并保证S_(ω+1)中的元素仍然是线性无关的,比如取2^(1/2)。接下来以此类推:

S_(ω+n+1)=S(ω+n)∪{2^(1/(n+2))}

再取并集可以得到:

S_(ω×2)=∪S_x(x<ω×2)

我们还可以继续下去,比如令S(ω×2+n+1)=S(ω×2+n)∪{π^(n+1)},然后又有S_(ω×3)=∪S_x(x<ω×3)等等。就这样一直往下增加元素,每个后继序数处随便选择一个能保证新得到的集合仍然在Q上线性无关的元素加入原来的集合,而极限序数处取之前所有更小集合的并集。直到某个S_α,加入R\S_α中的任何一个元素都会使新的集合在Q上线性相关了,我们就无法继续构造S_(α+1)了。于是S_α就是一个符合条件的T中的极大全序子集。

可以看出来,S_α就是R看成Q上的线性空间的一组基。对任意r∈R,我们都可以找出有限个S_α中的数c₀,c₁,c₂,......,c_n(n∈N),使得r=q₀c₀+q₁c₁+......+q_n*c_n,其中q₀,q₁,......,q_n是不全为0的有理数。这是因为如果存在一个r不能写成这样的组合,就必然需要在S_α中再加入至少一个元素d,得到一个更大的基H,r才能表示成H上的有理系数线性组合。于是H也是Q上的线性无关组,这和S_α是极大的线性无关组矛盾。

于是令k(1)=58和k(√739085)=42,对t∈S_α\{1,√739085},令k(t)=0。然后定义k(r)=q₀k(c₀)+q₁k(c₁)+......+q_n*k(c_n)。

设x=a₀b₀+a₁b₁+......+a_n*b_n

和y=u₀v₀+u₁v₁+......u_m*v_m

其中a_i,u_i∈Q,而b_i,v_i∈S_α。于是可得:

k(x+y)=a₀k(b₀)+a₁k(b₁)+......+a_n*k(b_n)+u₀k(u₀)+u₁k(v₁)+......+u_m*k(v_m)=k(x+y)

因为k(1)=58,k(√739085)=42,显然k不是正比例函数,而k(x+y)=k(x)+k(y)的连续解一定是正比例函数,所以k(x)是这个方程的不连续解。事实上,k(x)是处处不连续的,甚至是R上的不可测函数,所以构造的过程必须用到选择公理。

于是f(x)=0,g(x)=e^k(x),属于函数方程的一个非三角函数解。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字2个月前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
2.8万字2个月前
异世中原 连载中
异世中原
上官青鹤
异世界日记
0.2万字2个月前
一本看哭人的小说 连载中
一本看哭人的小说
啊,天才!
----回忆里永远的End永恒----
7.0万字2个月前
恋与伤 连载中
恋与伤
D王后
玄幻+虐恋+权谋+命相系+一本坏人泛滥的小说。讲述了四个大陆之间的感情纠葛。长篇小说!在欺骗,利用,谎言,杀戮,绝情中渲染虐的爱恋。每一次相......
78.0万字2个月前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字2个月前