数学联邦政治世界观
超小超大

可数饱和模型的一个引理

我们称公式 ψ(x→) 是完备理论 T 的完备公式,当且仅当, ψ 与T一致且对于任意与 ψ 含有相同自由变元的公式 ϕ 都有 T ⊨ ψ→ϕ 或者 T ⊨ ψ→¬ϕ 。称公式 ψ 是 T 可完备的,当且仅当,存在一个完备公式 ϕ满足 T ⊨ ϕ→ψ 。

定理:对于可数语言的完备理论 T ,如果 T 有可数饱和模型,那么每个公式都是 T 可完备的。

证明:反证法,如果有公式 ψ 不是T可完备的,那么存在 ϕ 满足 T⊬ψ→ϕ 和 T⊬ψ→¬ϕ ,否则 ψ 就是T的完备公式且 T⊨ψ→ψ ,这与假设矛盾。因此 T,ψ∧¬ϕ 与 T,ψ∧ϕ 一致。如果 ψ∧ϕ 是T可完备的,那么存在完备公式 σ满足T⊨σ→ψ∧ϕ ,矛盾,因此 ψ∧ϕ 与 ψ∧¬ϕ 都不是 T 可完备的,根据定义可得存在公式 φ 满足 T,ψ∧ϕ∧φ 和 T,ψ∧ϕ∧¬φ 一致,以及公式 χ 满足 T,ψ∧¬ϕ∧χ 与T,ψ∧¬ϕ∧¬χ 一致……递归可得一个完全二叉树,得 T 有连续统基数个类型扩展。又因为可数饱和模型只能实现可数个不同的型(因为可数模型的有穷序列可数),这与 T 有可数饱和模型矛盾,因此 T 没有可数饱和模型。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

半心遗音 连载中
半心遗音
岑笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.2万字3个月前
宠,唯爱一生 连载中
宠,唯爱一生
爱吃香草大富婆
人的一生有很多选择,如果让你有机遇你愿意踏入吗?一个规则的制定者,一个规则下的遵守人,如何擦出火花。请问瓦洛克先生愿意娶文文女士,执子之手与......
6.2万字3个月前
际缘 连载中
际缘
钰柳州
【双男主】+【回忆杀】+【小甜饼】+【幻想】霁清轩和顾闫旭认识,相识许多年,却在结婚几年后出轨。顾闫旭在医院好似出现了幻觉,看到了18岁的霁......
2.0万字3个月前
我与神明之间的无数种可能 连载中
我与神明之间的无数种可能
须臾本愚
【双向暗恋+一见钟情】都说神明普度天下,潞鸢却不赞同。初入九重天,潞鸢带着灭族之痛,一腔怒火,此生只为手刃仇人与神明。再入九重天,他带着身后......
10.8万字3个月前
我在无序副本里弑神 连载中
我在无序副本里弑神
秋南栀
「出逃者」浅羽x「神牌」林沨林沨在求死时意外进入副本系统,为了与系统达成交易,获得【起死回生】复活妹妹,林沨选择留在系统成为玩家在过副本途中......
6.5万字2个月前
神修大陆 连载中
神修大陆
唐朝汐
在这个神修的大陆,法术强者为王的大陆上,有无数宗门和学院,可是有这么一个宗门他们以蝶为主,以音为辅,以扇为攻,宗门里的亲生血脉者刚会有一种特......
8.0万字2个月前