数学联邦政治世界观
超小超大

Tauber定理及其证明

Tauber 定理:设在 −1<x<1 上,有 f(x)=∑∞ₙ₌₀ αₙ xⁿ , limₙ → ∞ nαₙ=0 若 limₓ→₁ˉf(x)=S ,则 ∑∞ₙ₌₀ αₙ 收敛,且其和为 S .

证明:

ₙ ₙ ∞ ∞ ₙ ₙ

|∑αₖ−S|=|∑ αₖ−∑αₖxᵏ+∑αₖxᵏ−S|≤|∑αₖ−∑αₖxᵏ|

ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀

∞ ∞ ₙ ∞

+|∑αₖxᵏ|+|∑αₖxᵏ−S|=|∑αₖ(1−xᵏ)|+|∑αₖxᵏ

ₖ₌ₙ₊₁ ₖ₌₀ ₖ₌₀ ₖ₌ₙ₊₁

|+|∑αₖxᵏ−S|

ₖ₌₀

估计右端的三项。

由 limₙ→∞ nαₙ=0 ⇒∀ε>0,∃N₁,∀n>N₁:|nαₙ|<ε

3

,同时 n|αₙ|< ε

3

,并且

Σ k|αₖ|

lim ₖ₌₀

ₙ→∞ ───

n

Σ k|αₖ|

ₖ₌₀ ε

=lim n|αₙ|=0 ⇒ ──<─

n 3

由 limₓ→₁−f(x)=S⇒∃N₂,∀n>N₂,|f

1 ε

(1 − ─)−S|<─

n 3

1

取 x=1−─, N=mαx{N₁,N₂} ,当 n>N 时: n

|∑ⁿₖ₌₀ αₖ(1−xᵏ)|≤∑ⁿₖ₌₀|αₖ|(1−x)|1+x+⋯+xᵏ⁻¹|≤∑ⁿₖ₌₀ k|αₖ|(1−x)=1

n

ε

∑ⁿₖ₌₀ k|αₖ|<─

3

|∑∞ ₖ₌ₙ₊₁ αₖxᵏ|≤| 1

n

ε

∑∞ₖ₌ₙ₊₁ k|αₖ|xᵏ|≤─

3

1

• ─

n

ε 1 ε

|∑∞ ₖ₌ₙ₊₁ xᵏ|≤─ • ──=─

3n 1−x 3n

1 ε

• ─────=─.

1−(1−1) 3

n ε

|∑∞ ₖ₌₀ αₖxᵏ−S|=|f(1 − 1)−S|<─

─ 3

n

.

所以

|∑ⁿₖ₌₀ αₖ−S|≤|∑ⁿₖ₌₀ αₖ(1−xᵏ)|+|∑∞ ₖ₌ₙ₊₁ αₖxᵏ|+|∑∞ ₖ₌₀ αₖxᵏ−S|≤ ε ε ε

─+─+─=ε

3 3 3

因此Σ∞ₙ₌₀ αₙ 收敛,且Σ∞ₙ₌₀ αₙ=S.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

漂亮的女人 连载中
漂亮的女人
飞向天宏
某夏天,漂亮的女人与闺蜜去海滩晒太阳,享受着阳光紫外线美身,结果从南方卷起了超强龙卷风……一场意外,成就她们的美梦!
8.0万字6个月前
日常做梦指南 连载中
日常做梦指南
庄馨
许多个小短篇故事,轻松随意,建议睡前食用摘选:一.我知道源哥搞音乐的是艺术家,搞艺术的呢就会经常感性,经常忧郁,不过当初的我只觉得,他那么阳......
0.5万字5个月前
教授你的狐狸尾巴露出来了 连载中
教授你的狐狸尾巴露出来了
叼鱼的猫
历史系少女林小棠她总梦见烈火中的楼阁,凄厉的兽嚎如泣如诉他却在讲台上推了推眼镜,镜片后的目光深不可测。当古玉牵引梦境,当传说照进现实—《山海......
0.8万字3个月前
恶霸军团前传 连载中
恶霸军团前传
天下第一帅草
恶霸军团的各种前传。
0.5万字2个月前
复活后给自己开个挂 连载中
复活后给自己开个挂
兔懒
一朝复苏,我看见我的副人格用着我的身体,为我报仇爱上他是宿命也是注定我深知只有他不会背叛我只有他才值得我付出所有我们绝对契合毫无秘密绝不背叛......
0.4万字2周前
你是真的狗啊! 连载中
你是真的狗啊!
倜傥二哈
身为修真界最后的一只天狼,瞿闻本打算就这么吃吃睡睡过完一生,直到有一天,他捡到了一本书。书中好巧不巧也有个叫瞿闻的天狼,这个“瞿闻”只出场了......
1.1万字6天前