数学联邦政治世界观
超小超大

Tauber定理及其证明

Tauber 定理:设在 −1<x<1 上,有 f(x)=∑∞ₙ₌₀ αₙ xⁿ , limₙ → ∞ nαₙ=0 若 limₓ→₁ˉf(x)=S ,则 ∑∞ₙ₌₀ αₙ 收敛,且其和为 S .

证明:

ₙ ₙ ∞ ∞ ₙ ₙ

|∑αₖ−S|=|∑ αₖ−∑αₖxᵏ+∑αₖxᵏ−S|≤|∑αₖ−∑αₖxᵏ|

ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀ ₖ₌₀

∞ ∞ ₙ ∞

+|∑αₖxᵏ|+|∑αₖxᵏ−S|=|∑αₖ(1−xᵏ)|+|∑αₖxᵏ

ₖ₌ₙ₊₁ ₖ₌₀ ₖ₌₀ ₖ₌ₙ₊₁

|+|∑αₖxᵏ−S|

ₖ₌₀

估计右端的三项。

由 limₙ→∞ nαₙ=0 ⇒∀ε>0,∃N₁,∀n>N₁:|nαₙ|<ε

3

,同时 n|αₙ|< ε

3

,并且

Σ k|αₖ|

lim ₖ₌₀

ₙ→∞ ───

n

Σ k|αₖ|

ₖ₌₀ ε

=lim n|αₙ|=0 ⇒ ──<─

n 3

由 limₓ→₁−f(x)=S⇒∃N₂,∀n>N₂,|f

1 ε

(1 − ─)−S|<─

n 3

1

取 x=1−─, N=mαx{N₁,N₂} ,当 n>N 时: n

|∑ⁿₖ₌₀ αₖ(1−xᵏ)|≤∑ⁿₖ₌₀|αₖ|(1−x)|1+x+⋯+xᵏ⁻¹|≤∑ⁿₖ₌₀ k|αₖ|(1−x)=1

n

ε

∑ⁿₖ₌₀ k|αₖ|<─

3

|∑∞ ₖ₌ₙ₊₁ αₖxᵏ|≤| 1

n

ε

∑∞ₖ₌ₙ₊₁ k|αₖ|xᵏ|≤─

3

1

• ─

n

ε 1 ε

|∑∞ ₖ₌ₙ₊₁ xᵏ|≤─ • ──=─

3n 1−x 3n

1 ε

• ─────=─.

1−(1−1) 3

n ε

|∑∞ ₖ₌₀ αₖxᵏ−S|=|f(1 − 1)−S|<─

─ 3

n

.

所以

|∑ⁿₖ₌₀ αₖ−S|≤|∑ⁿₖ₌₀ αₖ(1−xᵏ)|+|∑∞ ₖ₌ₙ₊₁ αₖxᵏ|+|∑∞ ₖ₌₀ αₖxᵏ−S|≤ ε ε ε

─+─+─=ε

3 3 3

因此Σ∞ₙ₌₀ αₙ 收敛,且Σ∞ₙ₌₀ αₙ=S.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

女寝海龟汤实录 连载中
女寝海龟汤实录
养老院里劈过腿
每日一则海龟汤。女寝444成员:橙子、花花、佳琪、小青档案记录&管理人员:~养老院里劈过腿~
1.0万字6个月前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
2.8万字5个月前
噩梦苏醒时分 连载中
噩梦苏醒时分
157***351_2137603610
怪物!怪物!男孩不住的哭喊着,然而,没有一个人搭理他。突然,黑夜里,一双黄色的眼睛转了过来,一股劲风携杂着血腥味像男孩扑去。
3.8万字3个月前
救世魔女 连载中
救世魔女
喵啪丝
白毛红瞳的少女,在西幻世界当巫师,无限流。渐渐消失的大陆,濒临毁灭的诸天万界。救世魔女,就是魔女。【随缘更】
54.8万字3个月前
水灵:叶罗丽之流水落花 连载中
水灵:叶罗丽之流水落花
謦冰熹
⭕️本篇小说和之前的X系列没有任何关联,也和其它“之”系列的没有任何关联!!!⭕️本篇小说纯属虚构如有雷同纯属巧合⭕️主要角色:女主(主角)......
7.0万字1个月前
ourname 连载中
ourname
木楚晴天
一丢丢科幻,青春的故事,我们在一起的美好日子和一些无法用言语理解的事情
2.3万字1个月前