数学联邦政治世界观
超小超大

力迫

王浩老师的《数理逻辑通俗讲话》上有一个关于力迫的有趣引理(这本书跟“通俗”一点不沾边,可能它面向的是数学系吧)。我们向集合论语言 Ը 中加入一个新常元 G 得到语言 Ը' ,令 p 是一个特征函数,其中 dom(p) ⊂ ω ∧ |p|<ω,且对于任意 i∈dom(p) ,都有 p(i)=1∨p(i)=0。规定力迫关系:对于任意不含 G 的公式 ф ,M╞ ф ⇔ p ⊩ ф; p(x)=1 ⇔ p ⊩ G(x)=1;p ⊩ ψ ∧ ф ⇔ p ⊩ ψ ∧ p ⊩ ф;p ⊩ ¬ψ ⇔ ∀q ⊇ p,q ⊮ ψ; p ⊩ ∃xψ ⇔ ∃x,p ⊩ ψ(x) 。注意我们的初始逻辑符号没有析取、蕴含和全称量词。根据力迫关系的定义,不难证明如下引理成立:

引理1:q ⊇ p → (p ⊩ ψ → q ⊩ ψ)。

引理2:p ⊮ ψ ∧ ¬ψ。

引理3:如果 p ⊮ ψ ,那么存在 q ⊇ p 满足 q ⊩ ¬ψ¬ψ。

证明:对公式递归即可。

我们称引入的常元G 对应的集合是generic,当且仅当对于任意 Ը' 公式 ф , G ⊩ ф 或者 G ⊩ ¬ψ,其中 G ⊩ ф ⇔ ∃p ⊂ G,p ⊩ ф 。

定理:对于任意p ∈ P,存在generic的 G ⊃ p 。

证明:令ф₁,ф₂,· · · 是 Ը' 的一个枚举,根据引理 3 可得如果 p ⊮ ф₁ ,那么存在 q ⊃ p 满足 q ⊩ ¬ф₁,令 q=p₁ ,那么递归可得 p₁,p₂,· · · 最后令 G=∪pᵢ 即可

ᵢ∈ω

,不难验证 G ⊩ ф 或者 G ⊩ ¬ф 。

此时的G 是一个 ω 的函数,那么这是一个什么样的函数呢?

引理4:G ⊩ G is infinity 。

证明:用反证法。假设存在p ⊂ G ,p ⊩ ∃n ∈ ω∀x(G(x)=1 → x ≤ n),那么 p ⊩ ∀x(G(x)=1 → x ≤ n) ,根据力迫关系可得不存在 q ⊃ p 满足 q ⊩ ∃x(G(x)=1∧x ≥ n)。由于 p 的定义域有上界,不妨设 dom(p)∪n ⊂ i,那么 q=p∪{〈i,1〉} ⊩ G(i)=1∧n∈i,矛盾,反证引理 4 成立。

引理5: G 力迫“G 的任意算术子集都是有穷的”。

证明:令ψ(x) 定义了 G 的算术子集 A ,那么存在 p ⊂ G 满足 p ⊩ ∀x(ψ(x) → x∈G),由于 p 的定义域有限,因此只有有限个 x∈ω 满足 p ⊩ x∈G,这蕴含只有有限个 x 满足 p ⊩ ψ(x) ,因此 p 力迫“ A 是有穷集合”, G 也力迫“ A 是有穷集合”,引理 5 得证。

推论1: G 不是算术子集。

证明:由引理4,5 可得。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

天道?呵,本神女可是创世神! 连载中
天道?呵,本神女可是创世神!
江边月皎皎
啧啧啧,似乎在这个平台修仙文没什么流量啊。...洛璃月自出生以来,就位居高位,受尽宠爱。可就在某一天,她娘亲爹地全都莫名失踪,而她被人掳走。......
0.4万字8个月前
月夜之情 连载中
月夜之情
乔忆娇
0.8万字7个月前
她不是疯子 连载中
她不是疯子
墨玉菏
特点:生性自在散漫,不愿受世俗约束,道德感比较模糊,遇好人则菩萨心肠,遇坏人则sha人如麻不是小人,也不愿做道貌岸然的君
0.9万字4个月前
梦里逢仙 连载中
梦里逢仙
念乡也
简介:“睡吧,梦里什么都有。”更新中:青衣女魃一次意外,闻歌在睡梦中见到了传说中的神仙,每一个夜晚,她都会进入那些神仙的记忆里,去观看她们的......
20.6万字3个月前
语音厅:双A组合 连载中
语音厅:双A组合
严婉歆
[已签约]双男主+语音厅+双A组合+全虚构
4.3万字2个月前
校园快穿,清纯小白莲暴力斩妖 连载中
校园快穿,清纯小白莲暴力斩妖
蛋炒饭很香
校园妖魔横行,破解学生惨案。惨死的学生成为害人的妖,背后都有一个痛苦的事件。
0.4万字1个月前