数学联邦政治世界观
超小超大

数学定理(一)

power Dedekind infinite cardinal定理

以下内容均不假设选择公理。

称一个集合α 是power Dedekind infinite,当且仅当 Pα ≥ ω。

引理:集合α 是power Dedekind infinite,当且仅当 α ≥* ω ,其中 x ≥*y 当且仅当存在从 x 到 y 的满射 ⊣

定理:假设α 是power Dedekind infinite的且 b ≤* α ,那么 ω ≤* b∨b+ω ≤* α 。

证明:假设ω ≰* b,定义 g:α → b 是满射。由引理知存在 f:α → ω 是满射,现在求存在满射 σ:α → b+ω 。

定义αₙ=f⁻¹(n) ⊂ α 和 bₙ=g[αₙ] ⊆ b,则 i ≠ j → αᵢ ∩ αⱼ=∅ 且 α=∪αₙ 。

假设∀n∃m>n(bₘ₊₁ ⊈ b₀∪· · ·∪bₙ),那么定义 φ:∪bᵢ → ω

i

,令 φ(x)=n 当且仅当 n=min {k:x∈bₖ} ,则 φ 是从 ∪bᵢ → ω 的满射

i

,这与 ω ≰* b矛盾,反证存在自然数 n 满足 b₀∪· · ·∪bₙ ⊇ ∪bᵢ

i∈ω

,因此 b=b₀∪· · ·∪bₙ 。

定义ᵇ'⁰⁼ᵇ⁰,ᵇ'ⁱ⁺¹⁼ᵇⁱ⁺¹ ⁻ ∪bₖ

k≤i

,则 b'ᵢ∩b'ⱼ=∅ 。由于对于任意 k , g[αₖ] ⊆ b'₀∪· · ·∪b'ₙ ,因此我们可以把 αₖ 划为 n+1 个不相交的子集 α⁰ₖ,· · · αⁿₖ,其中 g[αⁱₖ] ⊆ b'ᵢ 。对于任意 0 ≤ i ≤ n ,令 cᵢ=∪αⁱₖ

k∈ω

,可证 cᵢ∩cⱼ=∅ 且 α=c₀∪· · ·∪cₙ ,因此存在 i ≤ n 满足 f[cᵢ] 是 ω 的可数子集。

下面证明存在k 使得 ᵇ'ⁱ⁼∪g[αⁱₙ]:

n≤k

否则 ∀k,b'ᵢ ⊃ ∪g[αⁱₙ]

n≤k

,那么就存在 b 到 ω 上的满射,这与 b ≱* ω 矛盾,因此存在 k 使得 b'ᵢ=∪g[αⁱₙ] 。

n≤k

由于对于任意自然数 l 都有 f[αⁱₙ]=l ,因此 f[∪αⁱₗ]是 ω 的可数子集。

l>k

令 ʰ:ᶠ[∪αⁱₗ] → ω 为双射。

l>k

到此定义满射σ:α → b+ω:假设 x∈cⱼ,j ≠ i,那么 σ(x)=g(x) ;假设 x∈∪αⁱₙ

n≤k

,那么 σ(x)=g(x) ;如果 x∈∪αⁱₙ ,

n>k

那么 σ(x)=h◦f(x) 。可知 σ 即为题目所求。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

旁观者有罪 连载中
旁观者有罪
悲楚南落笔兰
往往查的越多…死的就越快,警告的终端便是死亡,查不到的往往是最危险的,科学的终端是玄学…而玄学的终端则是无尽的幻想……
0.6万字10个月前
捉住你的小尾巴 连载中
捉住你的小尾巴
淤鱼与欲
“重来一世,我会为你叛神……”迟安无奈苦笑道,醉卧在宫苑中的桃花树下。一朝间,迟安回到年少却什么都不记得,十三出头的迟安在马停街前接住了坠楼......
1.3万字6个月前
某日即归 连载中
某日即归
优盛
执行队长夙扶愉×审判官程既迎执行四年卧底任务回来,夙扶愉在负伤的情况下,想要跟蚀源灵同归于尽,却因为能量源的不稳定,导致了枫灵之火外溢,把自......
0.5万字5个月前
mwc故事小集-d903 连载中
mwc故事小集-d903
暮晚词
用来发挥作者我各种奇怪怪的想法你们也可以投稿自己想看什么就是我写的可能会有点差
1.0万字4个月前
神女今天也在凭实力单身 连载中
神女今天也在凭实力单身
烤味土豆
褚玉溪轮回千世,次次补天次次殉道。这一世她只想探索灭杀天道的方法——五灵根天才?天级阵法师?不,她要当弑天者。清冷师尊送的拜师礼为什么像她的......
1.1万字4个月前
希尔星源大陆 连载中
希尔星源大陆
梦笙韫皖
女主安可拉,遇到自己的真爱,并且和伙伴们一起面对着各种冒险……
0.6万字3个月前