数学联邦政治世界观
超小超大

数学定理(二)

dually Dedekind infinite定理

我们称一个集合α 是dually Dedekind infinite的,当且仅当存在 α 到 α+1 的满射,其中 0 ∉ α 。

集合α 是power Dedekind finite的,当且仅当不存在 ω 到 Pα 的单射。

定理:假设α=∪αₙ

n∈ω

, α 是dually Dedekind infinite的,αₙ 都是power Dedekind finite的,那么存在满射 g:α → α+1 (其中 0 ∉ α )和严格单增自然数序列 i₀<i₁<· · · 满足 g⁻⁽ⁿ⁺¹⁾ (0) ⊆ αᵢₙ。

证明:证明无需AC。由于 α 是dually Dedekind infinite的,令 f:α → α+1 是满射。

引理1 :对于任意自然数 m,n ,存在 k∈ω 使 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ 。否则,假设 n 满足“任意自然数 k 都有 f⁻ᵏ[αₘ] ⊆ α₀∪· · ·∪αₙ ”,因此 P(α₀∪· · ·∪αₙ) ⊇ {f⁻ᵏ[αₘ]:k∈ω};由于 k ≠ l → fˡ[αₘ] ∩fᵏ[αₘ]=∅,因此 P(α₀∪· · ·∪αₙ) 有可数子集;但是任意有穷个power Dedekind finite集合的并仍然是power Dedekind finite的,因此 P(α₀∪· · ·∪αₙ) 没有可数子集,矛盾,反证存在 k∈ω 满足 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ ,引理成立。

现在令i₀=min{n:f⁻¹(0)∩αₙ ≠ ∅} ,令 c₀=f⁻¹(0)∩αᵢ₀,根据引理 1 可知存在 i₁=min{n:∃k,f⁻ᵏ[c₀]∩αₙ ≠ ∅} 、 k₁=min {n:f⁻ⁿ[c₀] ∩αᵢ₁ ≠ ∅} 和 c₁=f⁻ᵏ¹[c₀]∩αᵢ₁。仍然根据引理,可继续定义 i₂,k₂,c₂,i₃,· · · ,即 iₘ₊₁=min {n:∃k,f⁻ᵏ[cₘ]∩αₙ ≠ ∅} 、kₘ₊₁=min {n:f⁻ⁿ[cₘ]∩αᵢₘ₊₁ ≠ ∅} 和 cₘ₊₁=f⁻ᵏᵐ⁺¹ [cₘ]∩αᵢₘ₊₁ 。这样我们就得到了一组严格单增的自然数序列 (iₙ) n∈ω,并且当 n>m 时有 fˡᵐ [cₙ] ⊆ cₙ₋ₘ ⊆ αᵢₙ₋ₘ,其中 lₘ=∑kᵢ 。

i≤m

令c₀⁽ⁿ⁾=fˡⁿ [cₙ] ,则有 c₀⁽ⁿ⁾ ⊇ c₀⁽ⁿ⁺¹⁾,下面证明存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾:否则,存在 {c₀⁽ⁿ⁾:n<ω} 的无穷子集 {c₀⁽ᶠ⁽ⁿ⁾⁾:n<ω} 满足 c₀⁽ᶠ⁽⁰⁾⁾ ⊃ c₀⁽ᶠ⁽¹⁾⁾ ⊃ · · · ,其中 f 是自然数集上的单增函数,因此 Pc₀ 有可数子集,但 c₀ ⊆ αᵢ₀ ,因此 c₀ 是power Dedekind finite的,矛盾,反证存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾ 。将上述的 c₀⁽ᵐ⁾ 记为 b₀ ,则对于任意 cₙ 都有 fˡⁿ [cₙ] ⊇ b₀ 。

令f⁻ᵏ¹ [b₀]∩αᵢ₁=b₁ ,现在证明 fᵏ² [c₂] ⊇ b₁:假设 x∈b₁=f⁻ᵏ¹ [b₀]∩αᵢ₁,即 x∈αᵢ₁∧fᵏ¹(x) ∈ b₀,由于对于任意 cₙ 都有 fˡⁿ [cₙ] ⊇ b₀,因此存在 y∈c₂ 满足 fᵏ¹⁺ᵏ² (y)=fᵏ¹ (x) ,换言之 f⁻ᵏ² (x)∩c₂ ≠ ∅ ,由 c₂ 定义知 c₂ ⊇ f⁻ᵏ² (x) ∩αᵢ₂,因此 x∈fᵏ² [c₂] ,即 fᵏ² [c₂] ⊇ b₁ 。令 f⁻ᵏ² [b₁]∩αᵢ₂=b₂,既然 fᵏ² [c₂] ⊇ b₁,那么 fᵏ² [b₂]=b₁ 。重复上述操作得到 b₃,b₄,· · ·,即令 f⁻ᵏⁿ⁺¹ [bₙ] ∩αᵢₙ₊₁=bₙ₊₁ ,类似可证 fᵏⁿ⁺¹ [cₙ₊₁] ⊇ bₙ 和 fᵏⁿ⁺¹ [bₙ₊₁] =bₙ,且 bₙ ⊆ αᵢₙ 。现在根据 (bₙ) n∈ω 定义题目想要的满射 g:

如果x∉∪bₙ

n∈ω

,令 g(x)=x ;令 g[b₀]=0 ;若 x∈bₙ₊₁ ,令 g(x)=f(x)。则定义的 g(x) 即为所求。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字10个月前
情神……西玫溅妍 连载中
情神……西玫溅妍
慕羽儿mye
在第四维度的灵界上,玫瑰之王西玖溅妍与鹰国之王鹰.维洛依斯之间的超虐言情救赎,最终双双成神的故事!
1.1万字8个月前
小爱神与小战士 连载中
小爱神与小战士
柔狂_
爱神与战士He
5.3万字7个月前
教授你的狐狸尾巴露出来了 连载中
教授你的狐狸尾巴露出来了
叼鱼的猫
历史系少女林小棠她总梦见烈火中的楼阁,凄厉的兽嚎如泣如诉他却在讲台上推了推眼镜,镜片后的目光深不可测。当古玉牵引梦境,当传说照进现实—《山海......
0.8万字5个月前
重来一次会如何 连载中
重来一次会如何
鹤佳m
我是个普通在普通不过的女子,因为含恨死去,上天重新给了我开挂一样的人生。
6.0万字4个月前
这个世界好乱啊——娃娃世界 连载中
这个世界好乱啊——娃娃世界
大作者布丁
大作者和小作者创造了一个世界----娃娃世界,这里发生了很多有趣的故事,是什么呢?快点进去看看吧!
8.8万字2个月前