数学联邦政治世界观
超小超大

数学定理(二)

dually Dedekind infinite定理

我们称一个集合α 是dually Dedekind infinite的,当且仅当存在 α 到 α+1 的满射,其中 0 ∉ α 。

集合α 是power Dedekind finite的,当且仅当不存在 ω 到 Pα 的单射。

定理:假设α=∪αₙ

n∈ω

, α 是dually Dedekind infinite的,αₙ 都是power Dedekind finite的,那么存在满射 g:α → α+1 (其中 0 ∉ α )和严格单增自然数序列 i₀<i₁<· · · 满足 g⁻⁽ⁿ⁺¹⁾ (0) ⊆ αᵢₙ。

证明:证明无需AC。由于 α 是dually Dedekind infinite的,令 f:α → α+1 是满射。

引理1 :对于任意自然数 m,n ,存在 k∈ω 使 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ 。否则,假设 n 满足“任意自然数 k 都有 f⁻ᵏ[αₘ] ⊆ α₀∪· · ·∪αₙ ”,因此 P(α₀∪· · ·∪αₙ) ⊇ {f⁻ᵏ[αₘ]:k∈ω};由于 k ≠ l → fˡ[αₘ] ∩fᵏ[αₘ]=∅,因此 P(α₀∪· · ·∪αₙ) 有可数子集;但是任意有穷个power Dedekind finite集合的并仍然是power Dedekind finite的,因此 P(α₀∪· · ·∪αₙ) 没有可数子集,矛盾,反证存在 k∈ω 满足 f⁻ᵏ[αₘ] ⊈ α₀∪· · ·∪αₙ ,引理成立。

现在令i₀=min{n:f⁻¹(0)∩αₙ ≠ ∅} ,令 c₀=f⁻¹(0)∩αᵢ₀,根据引理 1 可知存在 i₁=min{n:∃k,f⁻ᵏ[c₀]∩αₙ ≠ ∅} 、 k₁=min {n:f⁻ⁿ[c₀] ∩αᵢ₁ ≠ ∅} 和 c₁=f⁻ᵏ¹[c₀]∩αᵢ₁。仍然根据引理,可继续定义 i₂,k₂,c₂,i₃,· · · ,即 iₘ₊₁=min {n:∃k,f⁻ᵏ[cₘ]∩αₙ ≠ ∅} 、kₘ₊₁=min {n:f⁻ⁿ[cₘ]∩αᵢₘ₊₁ ≠ ∅} 和 cₘ₊₁=f⁻ᵏᵐ⁺¹ [cₘ]∩αᵢₘ₊₁ 。这样我们就得到了一组严格单增的自然数序列 (iₙ) n∈ω,并且当 n>m 时有 fˡᵐ [cₙ] ⊆ cₙ₋ₘ ⊆ αᵢₙ₋ₘ,其中 lₘ=∑kᵢ 。

i≤m

令c₀⁽ⁿ⁾=fˡⁿ [cₙ] ,则有 c₀⁽ⁿ⁾ ⊇ c₀⁽ⁿ⁺¹⁾,下面证明存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾:否则,存在 {c₀⁽ⁿ⁾:n<ω} 的无穷子集 {c₀⁽ᶠ⁽ⁿ⁾⁾:n<ω} 满足 c₀⁽ᶠ⁽⁰⁾⁾ ⊃ c₀⁽ᶠ⁽¹⁾⁾ ⊃ · · · ,其中 f 是自然数集上的单增函数,因此 Pc₀ 有可数子集,但 c₀ ⊆ αᵢ₀ ,因此 c₀ 是power Dedekind finite的,矛盾,反证存在 m 满足 c₀⁽ᵐ⁺¹⁾=c₀⁽ᵐ⁾ 。将上述的 c₀⁽ᵐ⁾ 记为 b₀ ,则对于任意 cₙ 都有 fˡⁿ [cₙ] ⊇ b₀ 。

令f⁻ᵏ¹ [b₀]∩αᵢ₁=b₁ ,现在证明 fᵏ² [c₂] ⊇ b₁:假设 x∈b₁=f⁻ᵏ¹ [b₀]∩αᵢ₁,即 x∈αᵢ₁∧fᵏ¹(x) ∈ b₀,由于对于任意 cₙ 都有 fˡⁿ [cₙ] ⊇ b₀,因此存在 y∈c₂ 满足 fᵏ¹⁺ᵏ² (y)=fᵏ¹ (x) ,换言之 f⁻ᵏ² (x)∩c₂ ≠ ∅ ,由 c₂ 定义知 c₂ ⊇ f⁻ᵏ² (x) ∩αᵢ₂,因此 x∈fᵏ² [c₂] ,即 fᵏ² [c₂] ⊇ b₁ 。令 f⁻ᵏ² [b₁]∩αᵢ₂=b₂,既然 fᵏ² [c₂] ⊇ b₁,那么 fᵏ² [b₂]=b₁ 。重复上述操作得到 b₃,b₄,· · ·,即令 f⁻ᵏⁿ⁺¹ [bₙ] ∩αᵢₙ₊₁=bₙ₊₁ ,类似可证 fᵏⁿ⁺¹ [cₙ₊₁] ⊇ bₙ 和 fᵏⁿ⁺¹ [bₙ₊₁] =bₙ,且 bₙ ⊆ αᵢₙ 。现在根据 (bₙ) n∈ω 定义题目想要的满射 g:

如果x∉∪bₙ

n∈ω

,令 g(x)=x ;令 g[b₀]=0 ;若 x∈bₙ₊₁ ,令 g(x)=f(x)。则定义的 g(x) 即为所求。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字8个月前
万人迷她又被强取豪夺了 连载中
万人迷她又被强取豪夺了
李朵儿
【女主万人迷】+【众多修罗场】+【男神收割机】+【颜值巅峰】+【娇软美人】+【可甜可盐】+【强取豪夺】+【玛丽苏】+【绿茶美人】花琉璃只想完......
69.3万字8个月前
彼岸花开繁尘落 连载中
彼岸花开繁尘落
一盏蝶
“你真想好了吗?不打算再去见见他?”“还是不了,他如今是天界战神,只为苍生不为我……”“在你眼里我依旧是那个只为天下苍生而活的战神,去不知我......
7.4万字8个月前
777号玻璃树:属于我们的世界幻想 连载中
777号玻璃树:属于我们的世界幻想
*夜半太阳*
有关于维持世界时空的失落之石遭到破坏爆炸导致世界重组后,发生在一个先进的信息文明,以玻璃树作为主角视角的探索故事
0.5万字5个月前
暴露本性后我爽了 连载中
暴露本性后我爽了
绮潞
女主从小到大一直被打压,一次意外重生后她明白了一个道理,人活一世取悦自己才是真的。于是她开始发疯摆烂,嘿,没想到发疯了不仅自己爽了,还创造了......
0.4万字3个月前
上清神域 连载中
上清神域
雪梦妍
冰神还有生神之间的感情故事以及和龙神的恩怨,冰神的母亲被龙神神识所控制,而他的小姨,因为经受不住力量的诱惑,从而成为龙神的傀儡,一直和冰神作......
1.6万字2周前