数学联邦政治世界观
超小超大

Dedekind定理

Dedekind定理:若存在集合 A,B 满足条件:

1.A,B ≠ ∅;

2. A∪B=ℝ

3.对A 中的任意元素 α,B 中的任意元素 b ,都有 α<b

则:

1.A 中无最大元, B 中有最小元;

2.B 中无最大元, A 中有最小元

有且仅有一个成立:

证明:假设 A 中不存在最大元且 B 中不存在最小元

取A 中任一元素 α₁,B 中任一元素 α₂ ,则

α₁+α₂

────

2

一定落在 A,B 中的一个.若其落在 A 中,由于 B 无最小元,故一定存在整数 K 使得

α₂ – α₁

α₂ – ────

K

落在 B 中.

考虑将区间[α₁,α₂] K 等分,则一定存在相邻的两个分点使得左侧的在 A 中而右侧的在 B 中,记左侧的点代表的数为 α₃,右侧的为 α₄;再将区间 [α₁,α₂]K+1 等分,类似得到 α₅,α₆ ...

这样我们就构造出了一个数列{αₙ},它满足:

1.奇数项都在A 中,偶数项都在 B 中;

2.对于∀ϵ>0,取

2(α₂ – α₁)

S=[─────]+2

ϵ

,则对区间[α₁,α₂] S S+1,. . . 等分所形成的所有 {αₙ} 中的项,从中任取 αᵣ,αₘ,则一定有 |αᵣ – αₘ|<ϵ 成立,故 {αₙ} 是 Cαuchy 列,其收敛

设{αₙ} → T ,则 T 一定落在 A,B 中的一个,不妨设其落在 B 中,则由于 B 无最小元,则一定存在 γ∈B 且 γ<T ,则这时取 ϵ=T – γ ,则一定有无穷多连续项落在 B(T,ϵ) 中,这与 {αₙ} 的性质矛盾!

若A 中存在最大元且 B 中存在最小元,则记 A 中最大元为 α,B 中最小元为 b ,则对于 α>b,α=b,α<b 都容易推出矛盾 ▢

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

秋风下的女孩 连载中
秋风下的女孩
166***982_8882861693
同化,初心,消散
0.3万字6个月前
性格缺陷 连载中
性格缺陷
Le néant
【架空世界,双男主,1V1】男主喝了副作用最小的实验体,后期会很强。脑洞可能会有点奇怪,无厘头,男主不善良,有时候可能会有点小阴暗,甚至可能......
22.4万字6个月前
元灵纪之恶魔之影 连载中
元灵纪之恶魔之影
一只惵
“从前有一个恶魔…”自古以来,人们总是在杀死或封印恶魔,可谁告诉我为什么天下有这么多恶魔?
1.7万字4个月前
半心遗音 连载中
半心遗音
惬笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.1万字2个月前
宴行昭 连载中
宴行昭
今熹余朝欢
双强+双暗恋+搞笑+重生+甜宠+互撩【沙雕可爱小师妹×温柔纯爱二师兄】反差:【美强惨疯批美人×心软粘人忧郁美人】前世,君宴岺成神之时遭人暗算......
3.4万字2个月前
语音厅:双A组合 连载中
语音厅:双A组合
严婉歆
[已签约]双男主+语音厅+双A组合+全虚构
4.3万字2个月前