数学联邦政治世界观
超小超大

反证法

目录

一、逻辑学原理 ▹

1.1 不予盾律 ▹

1.2 排中律 ▹

1.3 矛盾和排中的关系 ▹

二、反证法的步骤 ▹

三、例子 ▹

一、逻辑学原理

在逻辑学中存在3条基础规则,分别是:同一律、不矛盾律、排中率。所谓的基础规则,可以理解为数学中的公理,也就是是大家认可的常识,所以不证自明(无需证明即为真的命题)。

在反证法中,主要依赖的是:不矛盾率和排中率,下面分别介绍下。

1.1 不矛盾律

不矛盾率律,通常也被称作:矛盾率

什么是矛盾关系?现看下面这样几个例子:

① 小明的数学分数既及格了,又没有及格;

② 北京是中国的首都,同时也不是中国的首都;

③ 今天这场足球比赛甲队赢了,但甲队也输了。

上面的每一个句子中,都存在两个说法(或看成命题),同时前后两种说法是互相否定的,

例如:小明的分数及格了,小明的分数没有及格,前后两种说法是互相否定的。

如果存在这种前后互相否定,那么我们就称:两种说法法矛盾了或这个复合命题矛盾了。

重要的是:如果存在两个互相否定的说法,那么这两种说法不可能同时为真。

也就是:这两种相互矛盾的说法,要么有一个真、一个假;要么两个都是假的。

即:如果存在两个互相否定的说法,至少有一个为假。

1.2 排中律

什么是排中,先看下面的几个例子:

① 中国要么属于亚洲,要么不属于亚洲;

② 这本书小明要么看过(打开过),要么没看过(没打开过)。

上面的每一个句子中,对于事实的判断都只存在两种可能,

例如:中国要么属于亚洲,要么不属于亚洲,不存在第三种可能。

如果一个事情的结果,只存在两种可能A或非A,在A和非A之间不存在中间的可能,即排中。

这等同于概率论中的:对立事件,两个对立的事件构成了整个样本空间。

重要的是:如果一个事件的结果若只存在两种可能A或非A,那么这两个结果不可能同时为假。

也就是:A或非A中,只存在一真一假,要么A真非A假,要么A假非A真。

1.3 矛盾和排中的关系

再回到上面的例子:

今天这场足球比赛甲队赢了,但甲队也输了。

足球比赛的结果存在三种可能:赢、平、输,

所以,这两种说法虽然是矛盾的,但这两种说法并不符合排中。

今天这场足球比赛甲队赢了,但甲队也输了。

这本书小明要么看过,要么没看过

因为这句话存在两个互相否定的说法,所以是矛盾的,

同时,一本书是否看过,只存在看过或没看过,所以也是排中的。

因此,若一个复合命题是符合排中的,那么该复合命题必然是矛盾的。

但是,如一个复合命题是矛盾的,但未必是符合排中的。

二、反证法的步骤

我们要证明一个数学命题,从正面去证明困难的情况下,可以考虑:正难则反,这个方法也是统计学中假设检验的核心论证逻辑。

例子:我们要证明是A是A,我们称为原命题。

第一步:写出原命题的的对立命题(注意不是原命题的否命题,因为否命题是双否结构);

那么对立命题为:A不是A、或者并非A是A

第二步:假设对立命题《A不是A》是正确的;

第三步:假设对立命题《A不是A》为正确的的条件下,推出与事实不符(在数学中如推出和公理不符、定义不符、某个定理不符等),即推出矛盾了,也就是对立命题假设是正确的的这个假设不成立,即对立命题为假。

第四步:由于原命题和对立命题是排中的,也就是:若对立命题是假的,则原命题为真。

三、例子

证明 √2 是一个无理数‬

第一步:写出原命题的的对立命题

即:√2 不是一个无理数

分析:在实数中,只存在两种数,要么是无理数、要么是有理数

所以:√2 不是一个无理数 等价于 √2 是一个有理数

第二步:假设对立命题是正确的

即:假设√2 是一个有理数为真

第三步:假设对立命题正确的的条件下,推出与事实不符的矛盾

有理数的性质:任意一个有理数都可以表示为两个互质整数的比值

而:两个互质整数的公约数只为1

p

也就是:有理数=─ , 备注(p、q为整数、且q不为零) q

p

即:√2=─

q

对等式两边平方:2=─

移项:2q²=p²

因为只有偶数的平方才是偶数,所以: p² 是一个偶数

因此 p 也一个偶数,因为 p 是一个偶数,所以可以被2整除

那么设: p=2α ,备注(a为一个整数)

于是有: p²=4α²

代入后得: 2q²=4α²

化简得: q²=2α²

同理,这说明: q 也是个偶数,而两个偶数的公约数不为1

所以矛盾点是:这与 p 和 q 是两个互质整数的公约数只为1不符

也就是: √2 是一个有理数这个命题(假设)是错的

第四步:若对立命题是假的,则原命题为真

因为:√2 是一个有理数这个命题是错的(为假)

所以:√2 是一个无理数是对的(为真)

证毕。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

结良 连载中
结良
妻华
两个人相爱的故事
4.3万字5个月前
无名之誓 连载中
无名之誓
路过的魈厨
0.2万字5个月前
惋落 连载中
惋落
曲漾儿
〈正文已完结〉世上再无林晴,只有司清在三外之境和人界的来回穿梭,司清的心被万落给捂热了。但两人并不是一个空间的人,情爱能长久吗?
7.5万字3个月前
月绵 连载中
月绵
苍苒
麓夜绵,皇城弃女,身负神血,手持轮回笔与清心铃,却不知自己正是三界动荡的钥匙。
4.5万字2个月前
神话:以四季之名 连载中
神话:以四季之名
西宴残阳
本文无CP,可以随便磕。讨厌神话类请避雷。无法言语,无法垂泪。神主不过是异世的来者;自然不过是毁灭的执行者;死亡不过是开启毁灭之门的钥匙;爱......
0.4万字2个月前
快穿之填坑计划 连载中
快穿之填坑计划
阿语呐
不填坑遭雷劈任之初你自己去填坑吧。人妖殊途:修炼千年的大妖x当朝丞相"官人以诚待我,我当然以命相护。"我欲与君知,长命无绝衰。相隔千年:考古......
0.5万字4周前