数学联邦政治世界观
超小超大

Chevalley-Warning定理。

定理叙述

注意:设q=pα ,并设有有限域 𝔽q 。历史注记参考Pete L.Clark。

1935年,Artin猜想对于有限域上的多元多项式组的零点集,可能会有好的结论,他把这个问题交给自己的学生Ewald Warning去做。这时Claude Chevalley来到Göttingen访问,随后就证明了下面的结果。

• (Chevalley定理)设 d₁+· · ·+dᵣ<n 。对每个 1 ≤ i ≤ r ,令 Pᵢ(t₁,· · ·,tₙ) ∈ 𝔽q[t₁,· · ·,tₙ]为带有零常数项的总次数为 dᵢ 的多项式,则存在 0 ≠ x ∈ 𝔽ⁿq 使得 P₁(x)=· · ·=Pᵣ(x)=0 。

• (Warning定理)设 d₁+· · ·+dᵣ<n 。对每个 1 ≤ i ≤ r ,令 Pᵢ(t₁,· · ·,tₙ) ∈ 𝔽q[t₁,· · ·,tₙ] 为总次数为 dᵢ 的多项式,令 Z=#{x:∈ 𝔽ⁿq|P₁(x)=· · ·=Pᵣ(x)=0},则 p│Z 。

在古典代数几何中,我们一般把上面的Z 记为 V(P₁,· · ·,Pᵣ) 。

证明1

在这个证明中,我们考虑集合Z 的特征函数 1ᴢ 。

特征函数的多项式表示

我们有一个多项式版本的特征函数表示:

r

1ᴢ=∏ (1 – fᵢq⁻¹)

i=1

代数小贴士:这就是试题中定义的P 。注意 𝔽q 中的非零元都满足 xq⁻¹=1 。

有限域上函数的多项式表示

我们下面说明一个相当重要的结论:

• 任何函数 f:𝔽ⁿq → 𝔽q由一个多项式给出。

仅需注意到下面的多项式满足要求:

n

Pf(x)=∑ f(y)∏(1–(xᵢ – yᵢ)q⁻¹)

y∈𝔽ⁿq i=1

代数小贴士:只要注意到集合1₀ 的特征函数是

r

1₀=∏(1 – xᵢq⁻¹),然后把它拼凑出来!

i=1

比较两个多项式的次数

注意到1ᴢ 有两种表示的方法:

r

1. 1ᴢ=∏(1 – fᵢq⁻¹)

i=1

n

2. 1ᴢ(x)=∑ ∏(1 – (xᵢ – yᵢ)q⁻¹)

y∈Z i=1

我们分别看它们的次数。

r

1. 左边: 1ᴢ(x)=∑ ∏(1 – fᵢq⁻¹)

i=1

r

(q – 1)∑ dᵢ<(q – 1)n。

i=1

2. 右边:

n

1ᴢ(x)=∑ ∏(1 – (xᵢ – yᵢ)q⁻¹)

y∈Z i=1

中有一个单项式 x₁q⁻¹ · · ·xₙq⁻¹ 。

这单项式的系数是 (–1)ⁿ玄彬冥:,次数是 n(q –1) 。

倘若p ∤ Z,这就导致右边的次数大于左边,这可能发生吗?下面的结论将指出这不可能,从而完成我们的证明。

约化多项式表示

我们称单项式ct₁α₁ · · · tₙαₙ是约化的(reduced),若每个变元的次数 αᵢ<q ;若一多项式的所有单项式都是约化的,则称它是约化的。显然,你也可以称对每个变元 tᵢ 次数小于 q 的多项式是约化的。

代数小贴士:我们刚刚构作的Pf(x) 就是约化的。

通过将xᵢq 换成 xᵢ ,我们可以降低单项式的次数,但不改变这单项式在 𝔽ⁿq 上的取值。通过这种方式,我们可以将一个多项式 P 约化为 ∼P 。从这就能看出,约化多项式的次数一定不超过原来多项式的次数。

证明2:James Ax

这里再给一种James Ax的证明。

引理:取遍有限域求和

• (引理)设 α₁,· · ·,αₙ 为非负整数。

(1)若对 1 ≤ i ≤ n , αᵢ 是 q – 1 的正倍数,

则 ∑ x₁α₁ · · · xₙαₙ=(–1)ⁿ 。

(2)在其他情况,我们有

∑ x₁α₁ · · · xₙαₙ=0。

x∈𝔽ⁿq

估计和式

Ax注意到

玄彬冥: mod p=∑ 1ᴢ(x)

x∈𝔽ⁿq

r

注意1ᴢ=∏(1 – fᵢq⁻¹);

i=1

由刚刚证明的引理,注意到这多项式的次数不超过 (q – 1)n ,故它的每个单项式的次数不超过 (q – 1)n,更不可能做到每个 αᵢ 都是 q – 1 的正倍数!这就做完了。

定理应用

Chevalley-Warning定理有一个直接的推论:

• (推论)设 P(x) ∈ 𝔽[x¹,· · ·,xₙ] 是一有限域 𝔽 上 n 元 d 次齐次多项式。若 n>d ,则存在非零根。

这推论有很重要的应用,有时也把它合起来称为Chevalley-Warning定理。

• 三元二次型在有限域上有非平凡解。

这是上面推论的直接推论。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

浮生若梦云生惊蛰 连载中
浮生若梦云生惊蛰
曷月予还归哉
整一个故事架构和时间跨度巨大,日更的话需要很久,请各位读者耐心轮回之内轮回之外,革新与守旧,天命与人力樱花当自由盛开,也当自由凋零,投身烈火......
141.9万字11个月前
彩虹的光辉 连载中
彩虹的光辉
曦光耀雪
唐彩星成神的故事.这里古月娜他们不是毁灭之神和生命女神,她原本以为自己是唐三的女儿其实自己是生命女神的女儿,因为毁灭之神怕毁灭之力干扰了女儿......
2.8万字10个月前
变成男人去救世 连载中
变成男人去救世
白云衣
兽人、羽人、鲛人…没带脑子,想哪儿是哪儿,大女主,全文女主最大。
7.3万字8个月前
大佬飞升失败后穿越虐渣 连载中
大佬飞升失败后穿越虐渣
榛果果
(不建议带脑子观看)程芷衡被未婚夫算计,在渡劫时失败。就在她以为自己死了的时候,一个自称复仇系统的东西绑定了她,并把她带到一个陌生的世界,在......
1.3万字6个月前
涅槃重生的我 连载中
涅槃重生的我
小椿吃早饭
正在连载中....
5.3万字6个月前
瑟拉芬娜队x终章 连载中
瑟拉芬娜队x终章
游染生
原创世界观剧情,具体可见,第二章,这里写不下
0.4万字4个月前