数学联邦政治世界观
超小超大

奇怪的悖论

Talk is cheap, show me the(Ω,F,ℙ) .

当你试图写出符合要求的(Ω,F,ℙ)的时候,就会发现这样的(Ω,F,ℙ)其实不存在。(你很可能会需要类似于“ℕ 或 ℝ₊ 上的均匀分布”以满足“无论其中一个的金额是多少,另一个都有

1

2

的概率包含两倍的金额,

1

2

的概率包含一半的金额”。但这些分布都是不存在的。)

指出问题的关键在于两个箱子的金额期望都不存在,但是我发现将TA的设定稍作修改,可以让两个箱子的金额期望都存在!简单地说,就是将两个箱子的金额之比由 4 换成 q(q>0,q ≠ 1) 。为方便讨论,重新叙述如下:

游戏分为5个步骤:

1. Box A, B; (先声明两个箱子,两个箱子始终拥有固定的、不同的标签)

2. 主持人连续抛掷一枚均匀的硬币,直到出现一次正面为止。记抛掷次数为 n

3. 主持人准备两份现金,金额分别为 qⁿ 和 qⁿ⁺¹ ,并等可能地随机分配给A和B

4. 你等可能地从A和B中选取一个

5. 主持人告诉你,你选的箱子金额为 qᵐ

为了确保以上设定是良定的,须要构造一个相应的概率空间(这种简单离散设定下引入概率空间其实是多此一举,但鉴于此题的特殊性,还是显式构造一个吧):

Ω=ℕ₊ × {0,1} × {0,1},其中的元素记为ω=(ω₁,ω₂,ω₃)。ℙ{ω}=2⁻⁽ω₁⁺²⁾。其中, ω₁ 对应主持人抛硬币的结果, ω₂,ω₃ 分别对应主持人和你选择箱子的结果。为方便记录,这里定义 ˉωᵢ=1 – ωᵢ,i=2,3 .

箱子A, B的金额分别是随机变量A(ω)=qω₁+ω₂ B(ω)=qω₁+ω₂

你选取的金额是随机变量C(ω)=ω₃A+ˉω₃B

定义你未选取的箱子的金额为ˉC(ω)=ˉω₃A+ω₃B

现在问题是求𝔼(ˉC|C=qᵐ)

当m=1 时, {C,qᵐ}={(1,0,1),(1,1,0)},则此时 ˉC 只能为 qᵐ⁺¹=q²;

当m>1 时, {C=qᵐ}={(m,0,1),(m,1,0),(m – 1,1,1),(m – 1,0,0)},在此条件下,

1

ℙ{ˉC=qᵐ⁺¹|C=qᵐ}=─,↓

3

2

ℙ{ˉC=qᵐ⁻¹|C=qᵐ}=─ ←

3

q 2

𝔼(ˉC|C=qᵐ)=(─+─)qᵐ

3 3q

1

若取q=─,

4

5

易得 𝔼(C)=𝔼(ˉC)=─ 。

56

33

对于 m>1 有𝔼(ˉC|C=qᵐ)=─ C>C 。

12

1

而 m=1 时显然 ˉC=─ C<C 。

4

所以,若不被告知C=qᵐ,则 𝔼(C) 与 𝔼(ˉC) 均存在且相等,交换与否无所谓。若被告知 C=qᵐ,则当m=1时不应当交换,而当 m>1 时应当交换(假设风险中性)。𝔼(ˉC)

容易证明,𝔼(C) 与 𝔼(ˉC) 存在且相等的充要条件是 0<q<2,但此时 m=1 与 m>1 两种条件,有且仅有1种条件应当交换(若 0<q<1 则 m>1 时交换,若 1<q<2 则 m=1 时交换)。使得 m=1 或 m>1 时都“应当交换”的 q 取值范围为 (2,+∞),但此时𝔼(C) 与 𝔼(ˉC) 均不存在。

综上所述:

1. C=qᵐ确实包含有用的信息,这可能就是这个问题看起来像悖论的原因之一。

若金额的期望是有限的,时 m=1 与 m>1 两种条件,有且仅有一种是支持交换的。不存在既期望有限,又任何条件下都能靠交换提高期望收益的“好事”。

若不被告知所选取的金额,则交换与否无所谓。(无条件期望始终相等,在没有额外信息的情况下,不可能靠交换提高期望收益)

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
43.1万字9个月前
惊囚于夜 连载中
惊囚于夜
Aiu_2
不要凝视,天黑请闭眼……严卿起来时,发现周边并不是自己睡前的模样,而是一片黑。这种黑不是视觉上的,而是感官消失,周围静谧的黑……“刺啦—刺啦......
0.7万字7个月前
玉言 连载中
玉言
甜墨墨
有病我写的很糟心,看的很糟心。心灵鸡汤保命秘籍随笔会填补的完结再续自我评价:写的神出鬼没的
1.4万字5个月前
守护者们的故事2 连载中
守护者们的故事2
精英豌豆射手
先看《守护者们的故事1》,否则您有可能看不懂。【满天星文社】一盏孤灯,听万物声;满天星辰,照远归人。是的,叶璇之前立下了汗马功劳,可是真正的......
4.4万字4个月前
他是姐姐 连载中
他是姐姐
莫昕染
神的世纪结束了,可偏偏留下了永远的神,为了打破弑神所背负的诅咒,为了对抗新世纪“神”的统治,一体双魄的周思语为收集上古神物血珠所牵扯出一系列......
8.7万字4个月前
寂暗梦回 连载中
寂暗梦回
黎池念
你觉得你现在处的世界是真实的,还是在一场游戏中?亲爱的玩家,你不觉得现在的生活太无趣了吗?和我一起来参加这场有趣的游戏吧~
8.6万字3个月前