数学联邦政治世界观
超小超大

反证法

数学思想

以下是正文:

反证法是一种间接证法,它不直接证明命题为真,而是先假设原命题为假,通过推出矛盾,从而推定原命题为真的证明方法。

〖例1〗证明:函数y=cos√x不是周期函数。

含有“不是”字样,典型的反证法题型。

【证明】

假设函数y=cos√x不是周期函数

即存在T≠0,使cos√(x+T)=cos√x

令x=0,得T=4k²π²

不妨设k>0,令x=4π²,得:

√(4π²+4k²π²)=2mπ(m∈Z)

所以√(1+k²)=m(m∈Z)

但是当k>0时,k<√(1+k²)<k+1,因此√(1+k²)不是整数,矛盾。

假设不成立,故cos√x不是周期函数。

〖例2〗求证:√2是无理数。

因为无理数的定义是“不能写成p/q形式的数”,含有“不能”字样,可以考虑用反证法进行证明。

【证明】

假设√2不是无理数。

则√2是有理数或虚数。

(√2)²=2>0,√2不是虚数。

所以√2是有理数,设√2=p/q

其中,p,q∈Z且p,q互质。

若q=1,则p=√2,此时p不为整数。

若q>1,由√2=p/q得:

2=p²/q²

p²=2q²

∵q为整数

∴q²为整数

∴p²为2的倍数

∵p为整数

∴p为2的倍数

令p=2k(k∈Z)得:

4k²=2q²

∴2q²为4的倍数

∴q²为2的倍数

∴q为2的倍数

∴p,q有公因数2‬

这与“p,q互质”矛盾,假设不成立,故√2不是有理数。

故√2为无理数。

〖例3〗

若p>0,q>0,p³+q³=2,证明:p+q≤2.

此题直接由条件证明p+q≤2比较难,因此用反证法进行证明。

【证明】

假设p+q>2

∵p>0,q>0

∴(p+q)³=p³+3p²q+3pq²+q³>8

又∵p³+q³=2

∴3p²q+3pq²>6

∴3pq(p+q)>6

∴pq(p+q)>2

∵p³+q³=2

∴(p+q)(p²-pq+q²)=2

∴pq(p+q)>(p+q)(p²-pq+q²)

∵p+q>2>0

∴pq>p²-pq+q²

∴(p-q)²<0

这显然不可能,矛盾。

假设不成立,故p+q≤2。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
8.7万字5个月前
御妖诀 连载中
御妖诀
月无年
“苏荼…你骗的本王好苦啊…”他等了她三万年,换来的,只是一副空壳罢了。那个曾经爱笑的苏荼,如今变成了杀人的刀。在面对君临御的时候,你的剑也会......
6.3万字5个月前
影藏的梦 连载中
影藏的梦
LeeHanse0627
人类的三大情感——亲情、爱情与友情。如果有人丢失了它们,那么这个人就会成为一个毫无意识的空壳…我,四大家族之一的亚卡兰登家族中唯一存活于世的......
10.7万字3个月前
缥缈之梦 连载中
缥缈之梦
一只小猹w
虽说神界很美,可惜再漫长的路总有尽头,海市蜃楼再美也不过是假象,而这些梦里梦外缠烂辉煌的世界,却来自于无数个悲惨的回忆和童年。(书籍原名:缘......
2.5万字2个月前
说出你的故事 连载中
说出你的故事
独向隅
高考毕业后易暮意外参与了剧本杀游戏,为了保证存活努力挣取积分,演绎自己的剧本,最终迎来属于自己的归宿
1.9万字2个月前
今天还了债吗? 连载中
今天还了债吗?
元霏
元霏因为太无聊,坑了一堆人(元霏有点恶毒女配的感觉,不喜勿喷)
1.1万字2个月前