数学联邦政治世界观
超小超大

数学问题

毕达哥拉斯对数学的深入研究,特别是勾股定理的探索,直接导致了无理数的发现。

毕达哥拉斯学派发现了一个著名的几何定理——勾股定理,即在直角三角形中,斜边的平方等于两腿的平方和。即,如果c 是斜边, α 和 b 是两直角边,则有:

c²=α²+b²

然而,在等腰直角三角形中:c²=2α²

毕达哥拉斯学派原本坚信所有数都可以表示为两个整数的比例(即分数)。然而,当他们尝试将√2 表示为分数时遇到了困难。假设存在整数 m 和 n ,使得:

m

√2=─

n

推出:2=m²/n²

2n²=m²

这里的关键在于显示 m 和 n不能同时是无公约数的整数。

从2n²=m²可知, m² 是偶数,因此 m 也是偶数,设 m=2k ,代入得:

2n²=(2k)²=4k²

n²=2k²

这表明n² 也是偶数,因此 n 也必须是偶数。如果 m 和 n都是偶数,它们至少有2作为公因数。因此,原先假设的√2 能表示为两个无公约数整数的比例是不成立的。

结论:这个发现表明了存在一类数(即无理数),它们不能用任何两个互质的整数的比例来表示。这不仅展示了数学中的一个重要概念——无理数,也是“不可公约数”概念在理解数的本质中的应用。毕达哥拉斯的这一发现揭示了数学世界的一个新层面,即不是所有的数都可以被简化为最简分数形式,有些数本质上是“不可约的”。这对后来的数学发展产生了深远的影响。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

魇惡知境 连载中
魇惡知境
健力老登
俅谙与笙暮
1.2万字6个月前
漂亮的女人 连载中
漂亮的女人
飞向天宏
某夏天,漂亮的女人与闺蜜去海滩晒太阳,享受着阳光紫外线美身,结果从南方卷起了超强龙卷风……一场意外,成就她们的美梦!
8.0万字4个月前
世界是个甜蜜的童话 连载中
世界是个甜蜜的童话
童话仙子
讲述南星自幼被南书收养的故事
0.6万字3个月前
三世情缘之重生后我竟成了仇敌首徒 连载中
三世情缘之重生后我竟成了仇敌首徒
洛安歌
一万年前,他们是伴侣却不得善终。第二世他们没认出彼此站在对立面。今生为师徒。在仇恨与爱慕之情徘徊,难以抉择。
2.8万字1个月前
除了六哥,我们家,全都是重生的 连载中
除了六哥,我们家,全都是重生的
半生忧伤
(除了主cp外,还有副cp以及同人文cp)先虐后甜百里滟是东临国将军府的嫡小姐,爹爹是东陵国的百里大将军,她上面有六个哥哥,个个人中龙凤…东......
4.4万字3周前
漫画聊天群(艾宝,小伊,小瑾,七七) 连载中
漫画聊天群(艾宝,小伊,小瑾,七七)
鹿菁娜
这是一个群聊,可投稿。
0.1万字3周前