数学联邦政治世界观
超小超大

范畴论基础(Grothendieck宇宙)

定义 集合 ∪ 称为宇宙,如果满足以下性质

1.u∈∪⇒u⊂∪,即:∪是传递集;

2.u,υ∈∪⇒{u,υ}∈∪

3.u∈∪⇒P(u)∈∪

4.若 l ∈ ∪ , 一族集合 {uᵢ:i∈l}满足 ∀i,uᵢ ∈∪, 则 ∪uᵢ ∈ ∪

i∈l

5.ℤ≥₀∈∪.

对于集合Ⅹ,若 X∈∪ 则称为 ∪ -集;若 X 和一个 ∪ -集等势,则称为 ∪ -小集.

注 上述表述如果用更通俗的语言来表达, 可以理解为满足以下性质的集合 ∪ 称为宇宙:

1. ∪ 中的元素都是集合且是 ∪ 的子集

2. ∪ 中有限个元素构成的集合是 ∪ 的元素

3. ∪ 中元素的幂集是 ∪ 的元素

4. ∪ 中元素的任意并(指标需要也是 ∪ 中元素)都是 ∪ 的元素

5. ℤ≥₀ 是 ∪ 的元素

并且∪ 中元素可以简称为 ∪ -集.

假设 (A. Grothendieck) 对任何集合 X,存在宇宙 ∪ 使得 X∈∪ .

本着得过且过的原则, Grothendieck 宇宙就介绍到这里.

定义 一个范畴 C 称作是 ∪ -范畴,如果对任意对象 X,Y,从 X 到 Y 的态射 Homᴄ(X,Y) 都是 ∪ -小集. 如果态射集 Mor(C) 也是 ∪ -小集, 则称之为 ∪ -小范畴.

注 一个范畴 C 是不是 ∪ -范畴,主要看它的态射集 Mor(C) .

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

归魂渊 连载中
归魂渊
冰霜之间
有花无叶,有叶无花,永生永世,无法相见,生生不息,轮回不止,悲剧之爱,曼珠沙华。
3.8万字6个月前
零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字6个月前
艾莉亚的魔法之旅 连载中
艾莉亚的魔法之旅
星落深渊
艾莉亚的魔法之旅
0.9万字4个月前
不相离,不相弃 连载中
不相离,不相弃
栢竹
稚子被预言为灾星降世即便是肆意的妖,也被预言束缚不得归家她一直很疑惑为什么自己的友人眼底总是带着苦涩直到那日她踏上了家乡的土地一切也都水落石......
0.6万字3个月前
萌西穿越:柯诺的极致甜宠 连载中
萌西穿越:柯诺的极致甜宠
人鱼雪蓝
融合奇幻、冒险与爱情元素的精彩小说。故事以萌西和柯诺的经历为主线,构建了一个充满神秘色彩与无尽挑战的宏大世界。萌西,性格开朗且聪慧过人,本是......
6.7万字3个月前
虚拟男友太气人 连载中
虚拟男友太气人
杨小八
为拒绝孤寡小青蛙,选择虚拟男友快速脱单,没想到这个男友会气人!甜甜的恋爱也太难了吧!
0.9万字2周前