数学联邦政治世界观
超小超大

数学

(1) ZFC对于ZF在Π¹₄ 语句上保守:任何 Π¹₄ 语句如果能用ZFC证明,ZF就也能证明

(2) ZFC+GCH对ZF+DC在Π²₁ 语句上保守:任何 Π²₁ 语句如能用ZF+GCH证明,那么ZF+DC就能证明

(1)的证明:假设ZFC⊢∀xφ(x) ,其中 φ(x) 复杂度为 Σ¹₃ . 现在从ZF中论证:对于任意 α∈ℝ,L[α]╞ φ(α) ,这是因为 L[α] 满足ZFC. 而根据Shoenfield绝对性定理, L[α]╞ φ(α) 蕴涵 φ(α) ,而由于 α 是任意选取的,所以 ∀xφ(x) 得证。

(2)的证明:假设ZF+DC不能证明∀X⊆ℝφ(A),其中 φ 是二阶算术语句,那么就存在一个模型 M╞ ZF+DC+∃X⊆ℝφ(A) 。对它的 ω₁ 加入一个Cohen subset G ,这会使得 M[G]╞ CH。在这个扩张中取 L(R,A,G) ,注意到这个模型跟M中有着一样的实数,所以我们就得到一个 ZFC+GCH+∃X⊆ℝφ(A) 的模型,这也就说明了ZFC+GCH也不能证明 ∀X⊆ℝφ(A) 。

Remarks:

• 根据对证明的观察,可得知定理(1)中的ZFC可以被加强为ZFC+∃α∈ℝ(V=L[α]) ,而由于广义连续统假设GCH是∃α∈ℝ(V=L[α])的推论,所以也能得知ZFC+GCH对于ZF在 Π¹₄ 语句上保守。定理(2)说得则是一个稍微强的事实,那就是ZFC+GCH对ZF+DC在 Π²₁ 的语句上保守(所以这也包括了所有二阶算术语句)

• 同时我们知道 ∃α∈ℝ(ℝ=ℝ∩L[α]) 复杂度为 Σ¹₄ ,它是ZFC+∃α∈ℝ(V=L[α])的定理但不是ZF的定理。

• 连续统假设 2ω=ω₁ 等价于三阶算术中的 Σ²₁ 语句“存在一个实数上的关系,使得实数在这个关系下被排为良序,其中每一个真前段都可数”。定理(2)就相当于宣告了连续统假设不能等价于任何 Π²₁ 语句。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.2万字5个月前
惊囚于夜 连载中
惊囚于夜
Aiu_2
不要凝视,天黑请闭眼……严卿起来时,发现周边并不是自己睡前的模样,而是一片黑。这种黑不是视觉上的,而是感官消失,周围静谧的黑……“刺啦—刺啦......
0.7万字3个月前
不相离,不相弃 连载中
不相离,不相弃
栢竹
稚子被预言为灾星降世即便是肆意的妖,也被预言束缚不得归家她一直很疑惑为什么自己的友人眼底总是带着苦涩直到那日她踏上了家乡的土地一切也都水落石......
0.6万字2个月前
萌萌传 连载中
萌萌传
像老鹰一样123
《这样唱好美》中的女歌手,苏诗丁,唱得歌,比如《杀破狼》,唱得声音很玄空,清脆悦耳,小艳听了也说好听,撒撒听了说摇头,那我问他:“你喜欢什么......
61.9万字1个月前
1000个民间故事 连载中
1000个民间故事
无敌蛙王
每一个故事。或奇幻、或温情、或警醒。那些被岁月尘封的传说。带着生活的烟火与奇思。跨越时空。讲述人间万象。
18.6万字2天前
除了六哥,我们,全都是重生的 连载中
除了六哥,我们,全都是重生的
半生忧伤
(除了主cp外,还有副cp以及同人文cp)先虐后甜百里滟是东临国将军府的嫡小姐,爹爹是东陵国的百里大将军,她上面有六个哥哥,个个人中龙凤…东......
4.2万字11小时前